User's Manual
DISK JOCKEY ${ }^{\text {TM }}$ I CONTROLLER

Table of Contents
Introduction 1
Programming Specifications 3
Software Specifications 9
Disk System Software 14
I/O Connectors 16
Patches for $C P / M^{T M}$ * 17
CP/M Cold Start Loader 21
CBIOS Drivers for CP/M 23
Hardware Level Registers 26
Parts List 30
Assembly Instructions 33
Power-Up \& System Check Out 37
Hardware Description 44
Disk Jockey Firmware 56
Acknowledgment 63
Warranty 63Schematic Drawings

User's Manual

DISK JOCKEY ${ }^{\text {TM }}$ I

INTRODUCTION

The Morrow's Micro-Stuff DISK JOCKEY I (DJ) board features two distinct subsections:

1. A universal floppy disk controller capable of interfacing to a wide variety of floppy disk drives,
2. A serial interface that allows communication with a terminal device at TTY 20 ma current loop or RS-232 levels.

The floppy disk controller section will interface with any floppy disk drive plug compatible with the Shugart 800 drive. Siemens, Remex, Memorex and MFE are some of the manufacturers of full-sized floppy disks which are plug compatible with the Shugart 800/801.

The DJ plugs into an S-100 bus slot in a system with an 8080 type CPU and has a cable connector for a flat cable to the first floppy disk drive. The controller can control a chain of up to four drives daisy chained on this cable. A second connector on the DJ is provided for the attachment of a terminal device.

The DJ uses memory mapped I/O. Device registers used to input from and output to the floppy disk and the serial port are accessed from the CPU board of the S-100 system by references to memory addresses. Some registers differ in function depending on whether they are being read from or written to.

Most users will not wish to use the hardware level registers directly. Instead, they can call standard disk and serial I/O subroutines contained in 512 bytes of PROM memory on the DJ board. This PROM occupies a 512 byte block of S-100 bus memory addresses. A 256 byte RAM is also provided which is used by the PROM firmware as a data buffer and for temporary computation.

The actual addresses where the $I / 0$ registers, PROM, and RAM appear is controlled by another PROM, referred to as the address selection PROM. This PROM is supplied with standard addresses burned into it for these registers. If the standard addresses would conflict with some other device on the system, a PROM burned with non-standard addresses can be substituted.

The Disk Jockey uses 1024 bytes of memory starting at 340:0000 or EOOOH (standard version). The first 512 bytes are occupied by ROM, the next 256 bytes contain a RAM buffer. The last 256 bytes constitute the memory mapped I/0.

Most users will wish to take advantage of the standard I/O subroutines supplied in PROM on the DJ.

The user should branch to the appropriate address in a jump table in the first few words of the system ROM. Since the subroutines end with a RET instruction, a CALL instruction should be used to branch to the subroutine.

The jump table contains jump instructions to the true address of the utility routines within the ROM. Having a jump table allows the individual routines to be updated and moved around within the ROM without having to change software that calls the routines. Let A represent the address of word \emptyset of the onboard ROM. In boards with standard address decoding PROMS, $A=340: 000$. The addresses to call for the utility routines are then:

Address
Standard Value
Symbolic Value
Function

A	$340: 000$	DBOOT	DOS bootstrap routine
$A+3$	$340: 003$	TERMIN	Serial input
$A+6$	$340: 006$	TRMOUT	Serial output
$A+9$	$340: 011$	TKZERO	Recalibrate (Seek to TRKøø)
$A+12$	$340: 014$	TRKSET	Seek
$A+15$	$340: 017$	SECTOR	Select sector
$A+18$	$340: 022$	DMA	Set DMA address
$A+21$	$340: 025$	READ	Read a sector of disk data
$A+24$	$340: 030$	WRITE	Write a sector of disk data

The specific function of each subroutine is described below.
A subroutine upon completion will execute a RET instruction. A disk subroutine that completes normally will return with a zero in the accumulator. A disk subroutine that detects an error condition will return a nonzero value in the accumulator. A program should execute an ANA A instruction after return from a disk utility subroutine to set the flags according to the contents of the accumulator and then branch if non-zero to an appropriate error handling routine.

Serial I/0

At the hardware level, a means is provided for the CPU program to determine whether the present level of the serial input is a MARK (1) or a SPACE (\emptyset). The user has a choice of connecting to the TTY or RS-232 serial input pin depending on the electrical requirements of the input device.

When a program in the CPU looks at bit 1 of the Read Status Register (see Hardware Registers below), this bit will be a \emptyset if the input line is at the SPACE level and a 1 if the input line is at the MARK level.

The hardware only provides the facility for the software to determine whether the device attached to the serial in line is sending a \emptyset or 1 signal. Decoding a pattern in time of zeroes and ones into meaningful information is the province of software.

Built-in Disk Jockey firmware provides the facility to receive or send a byte of data from the input device according to industry wide conventions for serial data transmission. These conventions are explained below.

Normally, the interface line will be at a l level. When an input device wishes to send a byte of data, it puts the input line to a \emptyset level for a length of time referred to as one bit time. This is called the start bit. At the conclusion of the start bit, the input device sends in order starting with the least significant bit and ending with the most significant bit, the eight data bits of the byte. To do this, the input device puts the interface line at a \emptyset or a 1 level for one bit time, depending on the value of the data bit to be sent. At the conclusion of the bit time, the next data bit is sent. After the final bit is sent, the line returns to the 1 level for at least one bit time (the stop bit).

After the final stop bit is sent, the input device is free to send the next character. If the next character is not yet available, for example, the next key on the input keyboard has not been pressed, the input device can wait any amount of time before lowering the line to a \emptyset to signal the beginning of the next character.

The format described above is the most common format used by terminal devices. There is some variation, however. Some devices use two stop bits, some transmit a parity bit, etc. Check the documentation for the specific terminal in use for details.

Different input devices can send their information at different baud rates. The relationship between baud rate and bit times is given below. Many terminal devices have switch selectable baud rates. The user will typically wish to select the highest baud rate that will not exceed the capacity of the transmission path between the terminal and the Disk Jockey.

Baud Rate	Bit Times
110	9.091 ms
300	3.333 ms
1200	.833 ms
1800	.555 ms
2400	.417 ms
4800	.208 ms

A program assembling an incoming character will typically wait one-half bit time from the leading edge of the start bit and then check to see if the start bit is still present. It will then wait for one bit time and sample the first data bit, etc. This technique samples each bit in the middle of its bit time, greatly improving the noise immunity of the system.

The firmware supplied with the Disk Jockey will assemble a byte received from the interface using this technique. A timing loop generates the delay of one-half bit time or one bit time as required. The timing constant used by this loop must be set by the user according to the baud rate required. The value of the constant also depends on the instruction execution time of the processor.

To set the timing constant, a program must deposit the correct value appropriate to the baud rate and processor speed at a fixed location in the Disk Jockey's onboard RAM. The address of this location has the symbolic name SCON in the firmware listing. Its value in units with a standard decoding ROM is $342: 160$. The value of the timing constant that should be stored for commonly used baud rates is given in the following table for a 2 Mhz clock system:

Baud Rate	SCON decimal	SCON octal	SCON hex
110	375	$1: 166$	176
300	135	207	87
1200	33	41	21
1800	21	25	15
2400	16	20	10
4800	7	7	7

This timing constant must be set before the serial input or serial output subroutine is called.

The subroutine TERMIN can be called to wait for and assemble a character arriving over the serial input line. The character, once it is assembled, will be returned in CPU register A. The subroutine will not return until a character arrives.

The subroutine TRMOUT will transmit out the serial output port the character in register A. It will return once the character has been transmitted.

It is important to be aware of some of the disadvantages of serial communications as they affect programming technique. Since the CPU must sample the input line at the correct time and be listening to detect the start bit, the serial input subroutine must be called before the
start bit is received and must stay in its timing loops until a character is assembled. Once a character is received, all computation done by the program that called for the character must be done and control returned to the serial input subroutine before the start of the next character. This is normally not a problem due to the CPU instruction times being so short with respect to the bit times for commonly used baud rates, but attention must sometimes be paid to this requirement. Another disadvantage of this technique is the requirement to tie up the CPU to listen to see if a character is arriving. This prohibits a program that runs continuously until a key is pressed unless the program can guarantee that it can check for a start bit sufficiently frequently while doing the other computation that is necessary.

The performance of the serial input system can be improved when it becomes desirable to do so either by adding a more complex serial interface including a UART chip that will assemble an entire character without requiring intervention from the CPU or by using a parallel interface with a flag bit.

In spite of the disadvantages listed, serial communications offers the most economical way to attach a terminal to a computer. Virtually every terminal device manufactured offers a serial data path for connection to its CPU.

Disk I/O

To understand the significance of the disk utility subroutines, it is necessary to say a few words about how data is organized on the disk.

Information on the disk is organized into a number of concentric tracks:

$$
\begin{array}{ll}
\text { Full-sized floppy } & 77 \text { tracks } \\
\text { Mini-floppy } & 35 \text { tracks }
\end{array}
$$

The disk read/write head can be moved to any track by a series of step in or step out commands. A step in command moves the read/write head one track towards the center of the disk. A step out command moves the head one track away from the center of the disk. It is the responsibility of software to keep track of what track number the disk is currently at and to calculate how many step in or step out commands are necessary to move the head to a desired new position.

Once the read/write head has been moved to the desired track, the rotation of the disk will move a circle of magnetic material beneath the head. Within this circle of material, data is recorded in distinct regions called sectors. The sector is the smallest amount of information that can be separately read or written from the disk. There are twentysix sectors/track on a standard and sixteen sectors/track on a mini-floppy. Each sector contains 128 data bytes.

In the header field of each sector, the track and sector number is recorded. During read or write commands, this header is read before data transfer takes place. If the DJ firmware detects a discrepancy between the track number it thinks it is at and the number recorded on the disk, it reports an error. To recover from this error, a program must do a recalibrate operation. The disk drive has a sensor that reports when the disk is physically positioned at track $\emptyset \emptyset$. A series of step out commands must be issued until this status line comes on. This operation will always position the disk to the same physical track. The recalibrate sequence is a standard utility subroutine supplied with the disk firmware.

Transferring a sector of disk data between memory and the disk therefore involves the following steps, each corresponding to a subroutine call to Disk Jockey firmware:

Position the read/write head to the desired track.
Specify the sector number to be involved in the data transfer.
Specify the memory address that disk data is to be written from or read to.

Actually perform the read or write operation.
Check for error conditions.

Subroutines

TRKSET - Given a one byte track address between 0 and 76 in register C of the CPU, this subroutine verifies that it is a valid track address. It then performs a seek operation to position the read/write head to the desired track. It does not read the header fields of the track to verify that the seek took place correctly -- this is doen when an attempt is made to read or write a sector.

SECTOR - Given a one byte sector number between 1 and 26 in register C, this subroutine checks that it is a valid sector number. It then records it for use in a later read or write.

DMA - Given a memory address in the B-C register pair, this subroutine checks that it is not an address within the Disk Jockey's address space. It then records the address in its RAM. Any subsequent read or write operations will transfer data to or from this memory address (and the 127 successively higher numbered memory cells). No disk operations actually take place.

READ - 128 bytes of data are read off the current track from the sector specified by the last SECTOR subroutine call to the address in memory specified by the last DMA call.

WRITE - 128 bytes of data are written on the current track into the sector specified by the last sector subroutine call from the address in memory specified by the last DMA call.

TKZERO - Calling this subroutine will position the read/write head to track $\emptyset \emptyset$ using the track $\emptyset \emptyset$ sensor as a reference. As discussed above, a call to this subroutine is the appropriate response to a seek error -- that is, the software detecting that the track number recorded in the header field of a sector does not agree with the count of track number being maintained in software.

DBOOT - Branching to this routine will result in a bootstrap load operation from the floppy disk. The serial constant is initialized to 1200 baud. Sector 1 of track $\emptyset \emptyset$ of disk 1 will be read into memory location 200Q (80H). A branch will then be performed to this location. Branching to this subroutine from the front panel is the typical way to initialize a disk system.

DISKETTE INITIALIZATION - Before a new diskette can be successfully used, it must be initialized. Most diskettes are sold pre-initialized. However, it is sometimes necessary to reinitialize a diskette. The initialization process involves writing the header field of every sector onto the disk. None of the subroutines described above can be used to write these header fields. This is a safety measure to ensure that an erroneous branch to the firnware PROM cannot reinitialize a disk, destroying all the data recorded on it. The initialization function for diskettes is typically provided by a command included in the Disk Operating System. CP/M diskettes furnished by Thinker Toys contains a command INTLIZE.COM. The source code for this command, INTLIZE.ASM is also included. The Disk/ATE diskette has a command file called DSKINT which initializes diskettes and places a bootstrap loader on track zero sector one.

The Bootstrap

At location 340:0000 (EOOOH), there is a bootstrap routine which is intended to make the disk come up automatically. This routine selects drive number 1 , does a home to track $\emptyset \emptyset$ and reads sector 1 of track $\emptyset \emptyset$ into locations 2000 through 377Q. After reading this sector into memory, the routine branches to location 200Q. The first sector of track $\emptyset \emptyset$ should have a loader which will bring in the rest of the user's system. Customers who purchase CP/M with The Disk Jockey receive a diskette which has this loader. By setting the program counter of the CPU to 340:000Q (E000H) and pressing RUN, CP/M automatically loads itself into memory and starts.

Full-Sized Floppy/Mini-Floppy Hardware Configuration

The Disk Jockey controller has two slide switches which configure the board hardware to control either an $8^{\prime \prime}$ drive or a $5^{\prime \prime}$ drive.

8" Full-Sized Floppy Drives: BOTH slide switches must be in the LEFT-most position;

5" Mini-Floppy Drives: BOTH slide switches must be in the RIGHT-most position.

Selecting Drives

If decoders are installed in the disk drives themselves, up to eight drives can be connected in a daisy chain fashion to the Disk Jockey. Without decoders, four drives can be controlled by the Disk Jockey. It is important to note that none of the firmware with the exception of the boot loader ever changes the selection of drives. Before sending commands via the firmware, it is the programmer's responsibility to select the proper drive by storing the drive selection code in two places in memory.

Drive selection codes for drives $1,2,3$ and 4 are as follows:

Drive	Drive Selection Code	
1	210 Q	88 H
2	011 Q	09 H
3	050 Q	28 H
4	012 Q	0 H

The appropriate drive selection code must be stored at memory locations 342:163Q (E273H) and 343:002 (E302H).

Utilizing the Disk Jockey Firmware

In order to transfer information to and from a disk drive under the control of the Disk Jockey, the firmware functions must be used in the proper sequence. A seek function should always precede a set sector function. A read or write function should be preceded by a DMA function, a set sector function and a seek function.

Data Transfer Examples

READ:
Suppose sectors 5, 6, 7 and 8 of track 12 , drive 1 , need to be read into memory starting at location $7: 200 \mathrm{Q}(780 \mathrm{H})$. The following program will do this:

Octal

Hex

40	$3 E 88$	START	MVI	A,88H
42	3273 E2		STA	DRIVE
45	3202 E3		STA	FUNCTN
48	3168 E2		LXI	SP,STACK
$4 B$	CD 09 E0		CALL	TKZERO

Soft Ware Specifications

4E	OE OC
50	CD OC EO
53	010504
56	218007
59	C5
5A	E5
5B	CD OF EO
5E	C1
5F	C5
60	CD 12 E0
63	CD 15 E 0
66	A7
67	C2 4000
6A	E1
6B	C1
6C	05
6D	C8
6 E	0 C
6F	118000
72	19
73	C3 59

	MVI	C,12
	CALL	TSEEK
	LXI	B,405H
	LXI	$\mathrm{H}, 780 \mathrm{H}$
LOOP	PUSH	B
	PUSH	H
	CALL	SECTOR
	POP	B
	PUSH	B
	CALL	DMA
	CALL	DISKR
	ANA	A
	JNZ	START
	POP	H
	POP	B
	DCR	B
	RZ	
	INR	C
	LXI	D, 80H
	DAD	D
	JMP	LOOP

WRITE:
The following program writes from memory starting at location 200:0000 (8000 H) onto tracks 4, 5, and 6 of disk drive 1.

```
Octal
```

200	076210	WRITE	MVI	A,2100	INITIALIZE
202	062163342		STA	DRIVE	DRIVE
205	062002343		STA	FUNCTN	\#1
210	061150342		LXI	SP, STACK	INITIALIZE STACK POINTER
213	315011340		CALL	TKZERO	RECALIBRATE DISK HEAD
216	076004		MVI	A, 4	SET UP
220	062305000	TL00P	STA	TEMP	TRACK REGISTER
223	117		MOV	C, A	SEEK T0
224	315014340		CALL	TSEEK	NEXT TRACK
227	001001032		LXI	B,32:001Q	SECTOR COUNT\& NUMBER
232	041000200		LXI	H,200:000	DMA ADDRESS
235	305	SLOOP	PUSH	B	SAVE SECTOR \& COUNT
236	345		PUSH	H	SAVE DMA ADDRESS
237	315017340		CALL	SECTOR	SET CURRENT SECTOR
242	301		POP	B	RECOVER
243	305		PUSH	B	DMA ADDRESS \& SAVE
246	315022340		CALL	DMA	SET DMA ADDRESS
251	315030340		CALL	DISKW	WRITE A SECTOR
254	247		ANA	A	TEST FOR WRITE
255	302255000	STALL	JNZ	STALL	PROTECTED DISKETTE
260	341		POP	H	RECOVER DMA ADDRESS
261	301		POP	B	RECOVER SECTOR \& COUNT
262	021200000		LXI	D,200Q	INCREMENT
265	031		DAD	D	DMA ADDRESS

266	014	INR	C	INCREMENT SECTOR
267	005	DCR	B	DECREMENT COUNT
270	302235000	JNZ	SLOOP	READ ANOTHER SECTOR
273	072305000	LDA	TEMP	GET OLD TRACK
276	074	INR	A	\& INCREMENT
277	376007	CPI	7	TEST FOR
301	310	RZ		DONE
302	303220000	JMP	TLOOP	SEEK TO NEXT TRACK
305	000	TEMP:	DB	0

Hex

80	3 E 88	WRITE	MVI	A,88H
82	3273 E2		STA	DRIVE
85	3202 E3		STA	FUNCTN
88	3168 E2		LXI	SP,STACK
8B	CD 09 EO		CALL	TKZER0
8 E	3E 04		MVI	A, 4
90	32 C 500	TLOOP	STA	TEMP
93	4 F		MOV	C, A
94	CD OC EO		CALL	TSEEK
97	0101 1A		LXI	B,1A01H
9A	210080		LXI	$\mathrm{H}, 8000 \mathrm{H}$
9D	C5	SLOOP	PUSH	B
9 E	E5		PUSH	H
9 F	CD OF 34		CALL	SECTOR
A2	C1		POP	B
A3	C5		PUSH	B
A6	CD 1234		CALL	DMA
A9	CD 1834		CALL	DISKW
AC	A7		ANA	
AD	C2 AD 00	STALL	JNZ	STALL
B0	E1		POP	H
B1	C1		POP	B
B2	118000		LXI	B,80H
B5	19		DAD	D
B6	OC		INR	C
B7	05		DCR	B
B8	C2 9D 00		JNZ	SLOOP
BB	3A C5 00		LDA	TEMP
BE	3C		INR	A
BF	FE 07		CPI	7
C1	C8		RZ	
C2	C3 9000		JMP	TLOOP
C5	00	TEMP :	DB	0

The two examples above will appear to run rather slowly. This is due to reads and writes being done on consecutive sectors. Since there is overhead error checking done in the disk read and write firmware, the next sector has been passed over by the time the subsequent read or write operation commences. Therefore, the disk has to go almost a full revolution before the right sector is under the head again. Thus, to write twenty-six sectors, the diskette revolves roughly twenty-six revolutions instead of one. The method used to overcome this problem is called reading skewed sectors. That is, instead of reading, say, sectors $1,2,3,4,5 \ldots, 26$, in consecutive order, it is more efficient to read in the order 1, 6, 11, $16,21,26,5,10,15,20,25,4,9,14,19,24,3,8,13,18,23,2,7,12$, 17, 22. This will read an entire track in five revolutions instead of twenty-six. For an example of how to read and write sectors with a skew of five, see the software listings for patching $C P / M^{*}$ to the Disk Jockey.
*CP/M is a trade mark of Digital Research, Pacific Grove, CA.

DISK SYSTEM SOFTWARE

An assembled Disk Jockey is part of a DISCUS I system and is also accompanied by a copy of Disk/ATEtm. Disk/ATE and CP/M* are also available at additional cost to those who have purchased only the controller. Both Disk/ATE and Disk Jockey CP/M are tailored to the I/O of the Disk Jockey controller. Both expect that a serial TTY/RS232 terminal set for 1200 baud is connected to J2 (serial port) of the Disk Jockey. Both are supplied on a write protected diskette (notch open) which should be kept that way. DO NOT COVER THE NOTCH ON THE DISKETTE. Finally, both systems are designed to self load when the disk is in place in drive A and a branch to $340: 000 \mathrm{Q}$ ($E 000 \mathrm{H}$) is made. For the CP/M user, a series of manuals accompanies the diskette which describes how to back-up the CP/M diskette. The only precaution is that when drive B is to be used for back-up purposes, it must be "logged on" (e.g., DIR:B) before the back-up process is started.

Backing Up Disk/ATE

To make a back-up copy of Disk/ATE, load Disk/ATE and have a blank diskette which is not write protected (notch covered). Follow the steps outlined below:
a. Type: B16
followed by a carriage return. This command forces ATE to express numbers and addresses in hexidecimal radix.
b. Type: L IOTBL <T>
followed by a carriage return. This command loads the $I / 0$ driver symbol table from the disk.
c. Type: ? SYSIO...IOEND
followed by a carriage return. This is the beginning and ending addresses of the ATE I/O driver software expressed in hexidecimal radix. Make a note of these two values.
d. Type: L ATETBL <T>
followed by a carriage return. This command loads a selected subset of ATE's symbol table from the disk.
e. Type: ? BEGIN...END
followed by a carriage return. This is thebeginning and ending address of ATE expressed in hexidecimal radix. Make a note of these two values.
f. Type: GO DSKINT
followed by a carriage return. This is the load and go command for the diskette initialization program that formats a diskette to the IBM soft-sectored standard and also places a boot strap loader on track zero sector one.
g. DSKINT will ask that the diskette be placed in the drive and then will ask which drive the diskette is in. If the diskette is write protected or the diskette is not in the drive or if the drive door is not closed or if the indicated drive is not connected to the system, DSKINT will detect these conditions and start all over until all the conditions necessary to write on a diskette are satisfied. After completing the initialization, DSKINT automatically returns to ATE.
h. IO and ATE must be saved on the new diskette. IO must be saved first.
i. Using the values for SYSIO and IOEND obtained in step c, type: S IO (SYSIO value here)H... (IO END value here)H followed by a carriage return. The " H " suffix is necessary to force ATE to interpret the preceeding digits as a number in hexidecimal radix.
j. Using the values for BEGIN and END obtained in step e, type: S ATE (BEGIN value here)H... (END value here)H followed by a carriage return.
k. Disk/ATE has now been copied on the fresh diskette. Files may now be transfered from the original diskette as needed.

I/O CONNECTORS J1 AND J2

Illustrated below are the details of the pin connections of J 1 and J 2. In both illustrations, the top of the circuit board is shown as the straight line on the right side of the connector.

General

This section is included for those users of the Disk Jockey who have purchased a copy of CP/M Vers. 1.4 from a source other than Thinker Toys. Copies of CP/M sold through Thinker Toys have the necessary I/0 routines to interface CP/M to the Disk Jockey disk controller and serial I/O port.

At the end of this section are two listings which are designed to allow the Disk Jockey to be interfaced with the Digital Research CP/M operating system. This can be done with a minimum of effort.

The first listing is the so called "cold start loader" which is used to bring CP/M in from the disk. It also has code which will allow the user to easily write a modified version of CP/M out on the disk. There is even a small routine which loads the "cold start loader" itself on sector 1 of track \emptyset.

The second listing is CBIOS software (Custom Basic Input-Output System) which is the interface between CP/M and the Disk Jockey controller. The general idea is to key in the cold start loader, use the loader to bring CP/M in from a diskette, enter the CBIOS code and, finally, use the cold start loader to save everything out on a clean diskette.

The "Cold Start Loader"

There are three parts to the cold start loader. LOAD is at address 2000 $(80 \mathrm{H})$ and is designed to read CP / M into memory from location 51:000 through 77:377 (290H through 3FFFH). After loading CP/M, the LOAD routine branches to location 76:000 which is a routine that initializes several memory locations, prints a sign-on message and then branches to CP/M proper.

SAVE is at location 232Q (9AH) and is the reverse of LOAD. SAVE writes out on the disk starting at track \emptyset sector 2 all memory locations between 51:000 and 77:377. After performing this operation, SAVE comes to a dynamic halt at STALL 261 (B1H).

INTLZ is a short routine which writes locations 200 through 377 on sector 1 of track \emptyset. Thus, once the cold start loader is keyed into memory, it can save itself at the right location on the disk.

CBIOS

The standard version of $C P / M$ is designed to run with the Intel MDS development system a floppy disk interface. Most of the CP/M system software is completely independent of the particular 8080 hardware environment that it is running in. However, there is a certain part which must be tailored to the hardware of the host system. This hardware-dependent software is completely contained on pages 76 and 77 of CP / M (assuming the standard 16K version). CP/M can be made to run on different hardware by changing the software on pages 76 and 77 (3 EOOH through $3 F F F H$). The CBIOS software which is supplied with the Disk Jockey is designed to let CP / M run when an $8^{\prime \prime}$ full-sized floppy disk is attached to the Disk Jockey controller which is plugged into an S-100 main frame.

Patching CP/M*

Before actually performing any of the steps below, the Disk Jockey should be plugged into the mainframe S-100 bus, and an 8" disk drive should be connected to the controller. You should have on hand two diskettes: one with $C P / M$ and one blank. A copy of $C P / M$ which will run on the Disk Jockey will be constructed on the blank disk before any changes are attempted on the original CP/M disk.

Step I:

Plug in the controller. Connect the disk to the controller and turn on the CPU and disk drive. Do NOT put a diskette in the drive at this point.

Step II:

Enter the "cold start loader" into main memory starting at location $200(80 \mathrm{H})$. The instructions will extend from 200 to 377 filling all of the second half of page 0 .

Step III:

Load location 342:163 with 210 (E273 hex with 88 hex).
Load location 343:002 with 210 (E302 with 88 hex). Location 343:002 is in actuality an I/O device (memory mapped I/0) so values read from 343:002 and the values written into 343:002 will be independent.

Step IV:
Set the program counter of the CPU to location 272 (BA hex) but do NOT start the CPU yet.

Step V:
Insert the blank diskette into the drive and close the door. Be sure that the diskette is NOT write protected. (Write protected 8" diskettes have a notch near the corner of the diskette diagonally opposite the labeled corner.) Be sure the diskette is inserted right side up. on a Discus I system, the label should be on top and the diskette should be inserted by holding the label of the diskette between the thumb and forefinger when it is inserted into the drive.

Step VI:
Start the computer. After the CPU is started at 272, the activity light (if one is present) should come on, the head should load and step out to track 0 (if not already there). After sixteen revolutions of the diskette, the head will unload and the activity light will go off.

Step VII:
Stop the CPU. It should be executing the instruction JMP DONE. -303312000 (C3 CA 00 hex). The cold start loader should be on sector 1 of track 0 .

Step VIII:
Remove the diskette from the disk drive.

Step IX:
Change locations 222 and 223 from 000 and 076 to 261 and 000 respectively (change 92 to B1 and 93 to 00 hex).

Step X:
Initialize the program counter of the CPU to $200(80 \mathrm{H})$. Do NOT start the CPU.

Step XI:
Insert the $C P / M$ disk and be sure that it is write protected before it is put into the drive. Close the drive door securely.

Step XII:

Start the CPU. The head should load and after a second or two the head should step to track 1. Wait for the head to unload and the activity light to go off. CP/M has been loaded into memory between 51:0000 and 77:377Q.

Step XIII:
Enter the CBIOS code starting at location 76:000 through 77:072
(3E00 through 3F3A hex). Verify that the code has been entered correctly.

Step XIV:
Initialize the program counter of the CPU to 232 (9 A hex) but do NOT start the CPU.

Step XV:
Insert the blank (except for the "cold start loader") diskette into the drive and close the door securely.

Step XVI:
Start the CPU. The head should load, return to track 0 and write the better part of tracks 0 and 1 before the head unloads. After the head unloads, do NOT remove the diskette but stop the CPU. The CPU should be executing the JMP STALL instruction.

Step XVII:
Connect a terminal to the serial port of the Disk Jockey and adjust the baud rate to 1200 baud.

Step XVIII:
Initialize the program counter of the CPU to location 340:000 (E000 hex) and start the CPU (the blank disk should still be in the drive). After several seconds, the terminal should print:

16k CP/M VERS/1.4
After five seconds or so, the prompt should appear:

A>

A Disk Jockey version of $C P / M$ is now up and running. After this new version of $C P / M$ has been tested (see $C P / M$ documentation), Steps I through XVII can be used to alter the original CP/M diskette if desired.

CP/M* "COLD START LOADER"

INITIALIZE SECTOR COUNT
$\&$ DMA ADDRESS
SAVE SECTOR \& COUN
READ DATA
TE5T FOR ERROR
RESTART IF ERR \& COUNT DECREMENT \&
TEST FOR CP/M LOADED
CALCULATE NEXT SECTOR
DMA ADDR

INITLALIZE STACK POINTER
INITIALIIE SECTOR, COUNT
\& DMA ADDR
SAVE SECTOR \& COUNT
RITE DATA
ERROR
decrement count
CALCULATE NEXT SECTOR
DMA AdDR

INITIALIZE STACK POINTER
RETURN HEAO TO TRACK
INITIALIZE
WRITE $200 Q$ THROUGH
$377 Q$ ON TRACK \quad SECTR I
DYNAMIC HALT
"Cold 5tart Loader"

000:315	001	006	056	SETUP	LXI	8,56:0060	5ECTOR COUNT \& INITIAL 5ECTR
320	041	000	053		LXI	H,53:000Q	INITIALIZE DMA
323	042	164	342		5HLD	DMAADDR	ADDRE55
326	311				RET		
327	076	005		NSDMA	MVI	A, 5	5ECTOR 5KEW
331	201				AOD	C	AOO TO CURRENT
332	117				MOV	C, A	SECTOR
333	336	033			SBI	27	TE5T FOR
335	372		000		JM	OK	5ECTOR OVERFLOW
340	074				INR	A	ADJUST
341	117				MOV	C, A	NEW SECTOR
342	021	200	365		LXI	0,365:2000	dMa ADJUSTMENT
345	376	001			CPI	1	TE5T FOR 5ECTOR 1
347	302	362	000		JNZ	0K+3	NOT THROUGH W/ TRACK 0
352	305				PU5H	B	THROUGH W/ TRACK \square
353	315	014	340		CALL	5EEK	MOVE TO TRACK 1
356	301				POP	B	RECOVER SECTOR \& COUNT
357	021		$\begin{aligned} & 002 \\ & 342 \end{aligned}$	OK	LXI	D,2:2000	dma aojustment
362	052				LHLD	DMAADDR	GET OLD DMA ADDR
365	031	64			DAD	D	CALCULATE NEW
366	042	164342077			SHLD	OMAAODR	DMA ADDR \& SAVE
371	076				MVI	A, 770	TEST FOR
373	224				5UB	H	ADDRE55 OVERFLOW
374	372	327	000		JM	NSDMA	\& AOJUST IF
377	311				RET		NECESSARY

"Cold Start Loader"

Hex Listingslistings for				
CP/M* "COLD START LOAOER"				
E26E		STACK	Equ	342:1560
E274		OMAADDR	EQU	342:164Q
E00F		SECTOR	EQU	340:017Q
E015		READ	EQU	340:0250
E018		WRITE	EQU	340:0300
E00C		SEEK	EQU	340:014Q
E009		HOME	EQU	340:0110
E000		800TSTRA	P EQU	340:0000

OOCD	01062 E	SETUP	LXI	8,56:0060
0000	210028		LXI	H,53:0000
0003	2274 E2		SHLO	OMAADDR
0006	C9		RET	
0007	3 E 05	NSDMA	MVI	A, 5
0009	81		ADO	A
00DA	4 F		MOV	C, A
0008	DE 18		S8I	27
0000	FA EF 00		JM	OK
OOEO	3 C		INR	A
00 E 1	4 F		MOV	C, A
00E2	$1180 \mathrm{F5}$		LXI	D,365:2000
0055	FE 01		CPI	1
00E 7	C2 F2 00		JNZ	$0 \mathrm{~K}+3$
00EA	C5		PUSH	8
00 E 8	CD OC E0		CALL	SEEK
OOEE	C1		POP	8
00EF	118002	OK	LXI	0,2:2000
00F2	2A 74 E2		LHLD	DMAADOR
00F5	19		DAO	0
0056	2274 E 2		SHLO	DMAADOR
00F9	3 EF 3		MVI	A, 770
00FB	94		Su8	
OOFC	FA 0700		JM	NSOMA
00FF	C9		RET	

TYPE B:ITCBIOS.PRN

	; CBIOS	Drivers	FOR CP/M
2900	$\stackrel{i}{C P M}^{\text {CPM }}$	EQU	2900H
$3106=$	ENTRY	EQU	CPM +805 H
0004	CDISK	EQU	4
E000	ORIGIN	EQU	OEOOMH
E003	InPUT	EQU	ORIGIN+3
E006	OUTPUT	EQU	ORIGIN+6
E 009	TKZERO	EQU	ORIGIN+94
EOOC	TSEEK	Egu	ORIGIN+OCH
EOOF	SECTOR	EQU	ORIGIN+OFH
E012 =	DIA	EQU	ORIGIN+12H
E015	DISKR	EQU	ORIGIN+15H
E018	DISKW	EQU	ORIGIN+18H
E26E	STACK	EQU	ORIGIN+25EH
E27 3	DRIVE	EQU	ORTGIN+273H
E274	DMAADR	EQU	ORIGIN +274 H
E277 =	TRACK	EQU	ORIGIN+277H
E302 =	Status	EQU	ORIGIN+302H
E1F3	delay	EQU	ORIGIN+1F3H
E270	SCON	EQU	ORIGIN+270H
0003	IOBYTE	EQU	3H
0000	INTIOBY	EQU	
0080	RDYMSK	EQU	90H
$0001=$	WPTCT	EQU	1
	;		
3 E00		ORG	CPM +1500 H
	Start	JMP	B00T
3E03 C38D 3 E		JMP	WBOOT
3E06 C3973E		JMP	CONST
3E09 C3C53E		JMP	CONIN
3E0C C3D73E	CPOUT	JMP	CONOUT
3EOF C3F23E		JMP	LIST
3E12 C3E73E		MP	PUNCH
3E15 C3DD 3 E		JMP	READER
3E18 C3913E		JMP	HOME
3E18 C3343F		JMP	SELDISK
3E1E C3BD3E		JMP	SETTRX
3E21 C3823F		JMP	SETSEC
3E24 C312EO		JMP	DMA
3 E 27 C 38 C 3 F		JMP	READ
3E2A C3A13F		JMP	WRITE

3 F 8 C	C0393F	read	CALL	SELOSK
3 FRF	CD873F		CALL	SECTORA
$3 F 92$	DEOA		MVI	C. 10
3594	C5	REA01	PUSH	B
3F95	C015E0		call	DISKR
$3 F 98$	C1		POP	B
3F99	A7		ANA	4
3F9A	CS		R2	
$3 \mathrm{F98}$	OD		DC R	c
3F9C	C2943F		JNZ	READI
3F9F	$2 F$	READY	CMA	
3FAO	C9		RET	
3FA1	C0393F	WRITE	call	SELDSK
$3 F A 4$	CDG73F		CALL	SECTORA
$3 F A 7$	OEOA		MVI	C, 10
3FA9	C5	OSKW	PUSH	
3FAA	CD18E0		CALL	DISKW
3 FAD	C1		POP	B
3 FAE	A7		ANA	A
3FAF	C8		R2	
3 FBO	DO		OCR	C
$3 \mathrm{FB1}$	C2A93F		JNZ	OSKW
$3 F B 4$	3A02E 3	PROTCT	LDA	Status
3FB7	E601		ANI	WPTCT
$3 F 89$	CA9F3F		32	ready
3FBC	21E23F		LXI	H, PICTMSG
3 FBF	7E	MESSG	MOV	A, M
3 FCO	A 7		INA	A
3 FCl	C3		R2	
$3 \mathrm{FC2}$	E5		PUSH	H
3 CC	45		MOV	C, A
$3 \mathrm{FC4}$	COOC 3E		call	CPOUT
$3 \mathrm{FC7}$	E1		POP	H
$3 \mathrm{FC8}$	23		INX	H
$3 \mathrm{FC9}$	C 38F3F		JMP	MESSG
3 FCC		PROHPT	OS	
3 CCC	000A		DB	OOH, OAH
3FCE	$31364 \mathrm{B2043}$		OB	'16K CP/M '
$3 F D 7$	5645525320		DB	'vers '
3 FDC	312E34		DB	'1.4'
3 FOF	000A		DB	ODH, ORH
3FE1	00		DB	
3 FE 2	DOOA	PTCTMSG	08	OOH,OAH
3FE4	50524F5445		DB	'PROTECT'
3 FEB	ODOA		DB	OOH, OAH
3FE0	00		OB	0

HARDWARE LEVEL REGISTERS

Users desiring a greater level of control over the floppy disk or serial interface may wish to directly refer to the I/O device registers on the DJ from their 8080 program. There are eight one-byte registers, four of them are read only, and four of them are write only. The registers have four memory addresses on the $\mathrm{S}-100$ bus with a different register being selected during a read operation and during a write operation. This gives the total of eight registers.

To make use of the registers, the first operation is to write to the write function register a bit pattern that selects one of the disk drives of the floppy disk system. All the other command and status bits will then refer to the operation of this selected drive.

Readable Registers

Register 0 - Disk Data Register (location 343:0000 or E300H standard version):
Reading from this register will transfer one byte of information from the floppy disk to the CPU. Note that the correct use of this register requires programming sequences involving setting bits in other control registers and adhering to certain timing rules, or the data read will be meaningless.

Register 1 - Disk Read Mark Register (loc. 343:001Q or E301H standard version):
Reading from this register puts the CPU into a wait state until the DJ detects a field it recognizes as an address mark on the floppy disk. (See floppy disk data formats.) The bit pattern of the mark then appears as the contents of the register, and the CPU is allowed to leave the wait state and read in the register value.

If no valid data is found on the disk, the CPU will hang and an external reset will be necessary. It is therefore important for a disk to be in the drive, the door closed, the drive selected, and the head loaded and positioned to a valid track before a read mark is done.

Register 2 - Read Status Register (loc. 343:002Q or E302H standard version):
This register contains bits that identify the current status of the DJ and the currently selected drive.

BIT	7	6	5	4	3	2	1	\emptyset
	READY	SECTOR	2SIDED	INDEX	TRK \emptyset	HD-LOADED	SER-IN	WRT-PROT
	$*$	$*$	$*$	$*$	$*$			$*$

[^0]READY - This bit is a 1 when the currently selected disk drive is powered on, the door is closed, and a diskette is present.

SECTOR - This line relects the status of the sector status line from the floppy disk drive.

2SIDED - This line is a 1 when the status line from the floppy disk drive indicates that it is equipped to read two-sided floppy disks.

INDEX - This line reflects the status of the INDEX line from the floppy disk drive. It goes to a 1 once per revolution of the floppy disk.

TRKøØ - This bit is a 1 when the read/write head in the floppy disk is positioned on track $\emptyset \emptyset$.

HD-LOADED - This bit is a 1 when the $D J$ is directing the floppy disk drive to press the read/write head against the recording medium.

SER-IN - This bit reflects the current status of the TTY or RS-232 serial input line.

WRT-PROT - This bit is a 1 when the diskette in the drive is write protected, that is, there is a notch in the jacket for $8^{\prime \prime}$ drives or there is no notch for $5^{\prime \prime}$ drives.

Register 3 - Load Head Register (loc. 340:003Q or E303H standard version):
Reading a byte of data from the address of this register causes the currently selected floppy disk drive to load the read/write head, that is, operate the solenoid to bring the head into contact with the medium. The byte of data that will actually be read from this memory location is meaningless. The head will remain loaded for sixteen revolutions after a load head command and will then automatically unload unless bit 3 of the write function register is a \emptyset.

Write Only Registers

Register \emptyset - Disk Data Register (loc. 340:0000 or E300H standard version):
The byte of data to be written to the disk is written to this register. As with the Read Disk Data Register, a proper sequence of setup commands is necessary for a write to this register to be effective.

Register 1 - Disk Write Mark Register (loc. 340:001Q or E301H standard vers.):
Writing a byte of data to this register, when done at the proper time and place in a programming sequence, can write one of the special synchronization marks onto the disk. These synchronization marks are recorded on the disk in a way that is immediately distinguishable from data since certain clock pulses are omitted in accordance with industry standards. The DJ automatically generates the correct pattern of missing clock pulses to be recorded with the mark written.

The standard marks and the hex value of the byte of data that should be written to this register to get them are:

FB Data Mark
F8 Deleted Data Mark (rarely used)
FE Sector Mark (only used during initialization of disk)
FC Index Mark (only used during initialization of disk)

Register 2 - Write Function Register (loc. 340:002Q or E302H standard vers.):
This register contains bits that activate various control signals to the floppy disk drive(s) and to the internal circuitry of the DJ.

BIT	7	6	5	4	3	2	1	\emptyset
	DS1	IN-USE	DS3	STEP	E-A-U	DIR	DS4	DS2

DS1-DS4 - These bits are passed on to the output flat cable to the floppy disk drives as DRIVE SELECT 1 thru DRIVE SELECT 4. Each disk drive has a means of setting an internal jumper to determine which drive select line in the cable it will respond to. Only the disk drive whose drive select line is on will respond to the commands output by the program to the writable registers and present drive status in the readable registers. Likewise, only the selected drive will participate in data transfers. Only one drive should be selected at a time.

IN-USE - This line is normally not used. Setting it to a 1 forces the LED on the front of the Shugart compatible floppy disk drive to be on regardless of the state of other activity at the drive.

STEP - This bit controls the step line to the floppy disk drive. Setting this bit from a 1 to a \emptyset causes the stepping motor in the floppy disk drive to move the read/write head one track in the direction specified by the DIR bit.

DIR - This bit indicates to the floppy disk drive the direction it should move the read/write head in response to a step command:

$$
\begin{aligned}
& \emptyset=\text { out } \\
& 1=\text { in }
\end{aligned}
$$

E-A-U Enable Auto Unload. This bit being a 1 activates the automatic head unload feature. To prolong medium life, it is important to minimize the amount of time the read/write head is pressed against the disk. When this bit is set to a 1 , the DJ will automatically unload the read/write head sixteen revolutions after the last load head command was issued. This bit should always to set to a 1 except for hardware debugging or data transfer optimization purposes.

Register 3 - Write Serial Register (loc. 340:003Q or E303H standard version):
Bit 5 of this register will appear at an appropriate voltage (or current) level at the RS-232 (and TTY) serial output connector. The other bits of this register have no significance.

PARTS LIST

18 pin low profile socket
14 pin low profile sockets
16 pin low profile sockets
520 pin low profile sockets
1 74LSOO quad 2-input NAND gate
1 74LS02 quad 2-input NOR gate 3C

1 74LS08 quad 2-input AND gate 10B

1 74LS10 tri 3-input NAND gate 5B

1 74LS14 hex Schmitt-trigger inverter 5C

2 74LS20 dual 4-input NAND gate
12C, 13A
1 74LS32 quad 2-input OR gate
8 74LS74 dual D-type flip flop
8B
$9 A, 10 A, 1 B, 2 B, 12 B, 13 B$, 1C, 2C

174 LS124 dual voltage-controlled oscillator 8A

1 74LS155 dual 1 of 4 decoder 4C
2 74LS161 synchronous 4-bit counter
4B, 13C
$1 \quad 74165$ parallel-load 8-bit shift register
9B
1 74LS174 hex D-type latch with clear 7A

1 74LS241 octal tri-state** bus driver 10C
1 74LS273 octal D-type latch with clear 5A
1 74LS299 8-bit bidirectional shift/storage register 11C
$274366 / 368$ hex 2-4 tri-state** inverting bus drivers 3A, 6A
1 DM8090 quad inverter, dual 2-input NAND gate
11B
1 DM81LS95/97 octal tri-state** buffer
1 MMI 6301/82S129 4×256 bit tri-state** PROM
2 MMI 6306/82S131 4×512 bit tri-state** PROM
9C

1 DM81LS96/98 octal tri-state** inverting buffer 4A
221124×256 bit RAM with tri-state** output 6B, 7B
178055 volt 1 amp monolithic regulator 1 A
1741 operation amplifier 11A
$155^{\prime \prime} \times 10^{\prime \prime}$ printed circuit board
1 glossy photograph
*by-pass capacitors will vary in value from . $01 \mu \mathrm{fd}$ to $.1 \mu \mathrm{fd}$ depending upon currently available supplies.
**tri-state is a trademark of National Semiconductor Corp.

DO NOT INSTALL OR SOLDER ANY PARTS UNTIL YOU HAVE READ THESE INSTRUCTIONS SEVERAL TIMES AND HAVE FULLY DIGESTED THE INFORMATION!

CAUTION -- DO NOT SOLDER OR CLIP COMPONENT LEADS WITHOUT USING SAFETY GLASSES!

INSPECTION
Use the Parts List to make sure that there are no missing items in your kit. Please notify us of any shortages. Be sure to check for missing parts before you start to assemble.

COMPONENT LEAD WIDTHS

Bend the leads with the plastic bending block in your kit. Be sure that the leads are bent to the proper width before the part is inserted. Properly bent components solder easier and give the finished kit a professional appearance. See the right hand column of the Parts Installation for proper component widths.

SOCKETS

A socket is furnished for every integrated circuit. It is important that you use the sockets; otherwise, a defective part will be extremely difficult to replace.

NO REPAIR OR SERVICE WILL BE PERFORMED ON A KIT WHICH HAS HAD INTEGRATED CIRCUITS SOLDERED TO THE CIRCUIT BOARD.

PARTS ORIENTATION

In all references throughout the instructions, the convention used is that the gold edge connector is the bottom of the board. Orientation identification is molded into the plastic of the sockets and is illustrated below:

This orientation mark identifies where pin \#1 of the integrated circuit is to be positioned when inserted into the socket. The socket should be inserted in the board so that the orientation mark is in the lower right hand corner.

Orientation of the transistors, tantulum capacitors, diodes and voltage regulator is specified in the component layout drawing. It is advisable to study this drawing and the 8×10 glossy photograph carefully before building the kit. Refer to both during parts installation.

SOLDERING AND SOLDER IRONS
The most desirable soldering iron for complex electronic kits is a constant temperature soldering iron with an element regulated at $650^{\circ} \mathrm{F}$. The tip should be fine so that it can be brought in intimate contact with the pads of the circuit board. Both Unger and Weller have excellent products which fit the above requirements.

There are three important soldering requirements for building this kit.

1. Do not use an iron that is too cold (less than $600^{\circ} \mathrm{F}$) or too hot (more than $750^{\circ} \mathrm{F}$).
2. Do not apply the iron to a pad for extended periods.
3. Do not apply excessive amounts of solder.

The proper procedure for soldering components to the circuit board is as follows:

1. Bring the iron in contact with both the component lead and the pad.
2. Apply a small amount of solder at the point where the iron, component lead, and pad a1T make contact.
3. After the initial application of solder has been accomplished with the solder flowing to the pad and component lead, the heat of the iron will have transferred to both the pad and the lead. Apply a small amount of additional solder to cover the joint.between the pad and the lead. DO NOT PILE SOLDER ON THE JOINT! EXCESSIVE HEAT AND SOLDER CAUSE PADS AND LEADS TO LEFT FROM THE CIRCUIT BOARD. EXCESSIVE SOLDER IS THE PRIMARY CAUSE FOR BOARD SHORTS AND BRIDGED CONNECTIONS.

PARTS INSTALLATION

Before installing parts, bend the leads of the resistors, diodes, and tantulum capacitors to the lengths shown in the right hand column. After a series of parts have been installed in the board, bend the leads slightly to hold them in place, solder the leads and trim the excess lead lengths before proceeding to the next step.

Install:
CR1 1N914/4820-0201 signal diode

R1	180Ω	$\frac{1}{4}$
R2	watt	
R3	$3.9 \mathrm{k} \Omega$	"
R3	$1 \mathrm{k} \Omega$	"

R4, R7	$3.3 \mathrm{k} \Omega$	$"$
R5, R6	$27 \mathrm{k} \Omega$	$"$
R8-R13	180Ω	$"$
R22	510Ω	$"$

R14 $1.5 \mathrm{k} \Omega$ "
R15 3.3k "
R16, R17 $1 \mathrm{k} \Omega \quad$ "

R18 $47 \mathrm{k} \Omega \quad$ "

R19	$4.7 \mathrm{k} \Omega$	$"$
R23	510Ω	"

R24 1k "
R25, R26 510

CR2, CR3 $1 N 474212 \mathrm{v}$. zener diode
C3 $\quad .82 \mu \mathrm{fd}$ tantulum capacitor
C5, C6 $\quad 2.7 \mu \mathrm{fd} \quad "$
R21, 27, $28240 \Omega \frac{1}{2}$ watt resistor
4 Mhz crystal

Check for orientation! . 5 in. brown-grey-brown . 5
orange-white-red . 5
brown-black-red . 5
orange-orange-red . 5
red-purple-orange . 5
brown-grey-brown . 5
green-brown-brown . 5
brown-green-red . 5
orange-orange-red . 5
brown-black-red . 5
yellow-purple-orange . 5
Yellow-purple-red . 5
green-brown-brown . 5
brown-black-red . 5
green-brown-brown . 5
Check for orientation! . 5
" . 5
" . 5
red-yellow-brown . 6
Use a trimmed resistor lead to secure the crystal to the circuit board .45

C2, C4 $39 \mu \mathrm{fd}$ tantulum capacitor
Socket 11A 8-pin low profile
Sockets 3A, 6A-8A 16-pin low profile
Sockets 9A, 10A, 13A 14-pin low profile
Sockets 4A, 5A 20-pin low profile
Sockets $1 \mathrm{~B}-3 \mathrm{~B}, 5 \mathrm{~B}, 8 \mathrm{~B}, 10 \mathrm{~B}, 12 \mathrm{~B}, 13 \mathrm{~B}$
14-pin low profile
Sockets 4B, 6B, 7B, 9B, 11B 16-pin low profile
Sockets 1C-3C, 5C, 12C 14-pin low profile
Sockets 4C, 6C-8C, 13C 16-pin low profile
Sockets 9C-11C 20-pin low profile
R20 $470 \Omega 1$ watt resistor yellow-purple-brown . 8
J2 \quad-pin right angle header with pins oriented toward the top of the board (away from the 100 pin edge connector) Check for orientation!

J1. 50-pin right angle header with pins oriented toward the top of the board (away from the 100 pin edge connector)

Slide switches S1 and S2
After installation, these two switches should be switched in the same direction: to the left if the Disk Jockey is to be used with a full-size floppy disk or to the right if it is to control a 5" minifloppy disk drive.

C1 $.01 \mu \mathrm{fd}$ disk capacitor
By-pass capacitors (17 each). Values may vary from $.01 \mu \mathrm{fd}$ to $.1 \mu \mathrm{fd}$.

LM340.5/7805 5 volt regulator
Bend lead, insert and hand tighten the nut and bolt with the bolt running through the bottom of the board through the heat sink and through the regulator. The nut should be hand tightened over the regulator. Solder the leads. If heat sink grease is available, apply a thin film between the board, heat sink, and regualtor. Finally, tighten the nut firmly.

Power Supply/Voltage Regulator Check Out

Voltage requirements: (reference to ground - pins 50 and 100)
Pins 1 and 51 no less than 7 volts approx. 700 ma not more than 10 volts

Pin 2 not less than 13 volts approx. 25 ma not more than 22 volts

Pin 52 not less than -22 volts approx. 100 ma not more than -13 volts

Before installing any of the integrated circuits, apply power to pins 1 and 51, pin 2 and pin 52 (ground at pins 50 and 100) as specified above. Perform the following measurements with a volt meter:
(1) Pin 4 of $11 \mathrm{~A}(741) \quad-12$ volts
(2) Pin 7 of $11 \mathrm{~A}+12$ volts
(3) Pin 14 of $13 \mathrm{~A} \quad+5$ volts
(4) Pin 14 of 13B +5 volts
(5) Pin 16 of 13C +5 volts

If the voltage at any of the check points differs from the required value, return the unit for trouble shooting and repair.

Power-Up Check Out

Install the integrated circuits as per the layout on the board (note: IF the legend at 5A reads 74LS373, change to 74LS273). When inserting these parts, be careful not to bend pins under the package -- a pin which is bent under the integrated circuit may appear to be inserted in the socket. BENT PINS ARE THE MOST COMMON REASON FOR MALFUNCTIONING BOARDS!

After all the parts have been installed, voltages checked, and integrated circuits installed, reconnect the power supplies and power up the board again. This can be done stand-alone or in the mainframe of your computer. Check again the voltages called out in the previous section. If there are any differences from the required values, please return the board.

8"/5" Hardware Selection

Be sure that the two slide switches S1 and S2 are to the left for 8" drives and to the right for $5^{\prime \prime}$ drives. BOTH SWITCHES MUST FACE THE SAME DIRECTION -- BOTH TO THE LEFT OR BOTH TO THE RIGHT.

Power-Up and System Check Out

SYSTEM CHECK OUT

Introduction

The Disk Jockey interface occupies 1024 bytes of memory 340:000Q through 343:377Q (E000H through E3FFH). These addresses can be customized for special applications but in the check out procedures which follow, standard addressing will be assumed. Users of customized boards should apply appropriate address offsets.

ROM
(1) Examine location 340:0000 and verify that it contains 303Q (location EOOOH should contain C3).
(2) Examine location 340:003Q and verify that 3030 is also present (E003 should contain C3).
(3) Examine location $341: 377 \mathrm{Q}$ and verify that it contains 311 Q (E1FF should contain C9).

RAM
(1) Examine location 342:000Q (E200H).
(2) Verify that the following values can be deposited at the stated addresses.

	Octal		
Address	Value	Address	Value
$342: 000$	000	E200	00
$342: 001$	001	E201	01
$342: 002$	002	E202	02
$342: 003$	004	E203	04
$342: 004$	010	E204	08
$342: 005$	020	E205	10
$342: 006$	040	E206	20
$342: 007$	100	E207	40
$342: 010$	200	E208	80
$342: 011$	377	E209	FF

I/0

Disk Pause Logic

Enter the followping program in the Disk Jockey RAM:
Octal

$342: 000$	072	001	343	E200	3A 01 E3	LOOP	LDA	MARK
$342: 003$	303	000	342	E203	C3 00 E2		JMP	LOOP

Start this program at the label LOOP. The system should hang with PREADY low. Turn the computer off and then on in order to generate a $\overline{\mathrm{POC}}$ (power-on-reset). Note: many S-100 systems generate a POC signal when the reset switch is pressed and in this case it is not necessary to turn the system off and then on again. In the sequel, the above procedure will be referred to as "generate a $\overline{\mathrm{POC}}$ signal."

Enter the following program in the Disk Jockey RAM:

Octal
342:000 072000343 E200 3A 00 E3 LOOP LDA DATA 342:003 303000342 E203 C3 00 E2 JMP LOOP

Start the program. This time the system should not hang. Stop the computer. This completes the test of the disk pause logic.

Load Head Command

Generate a $\overline{\mathrm{POC}}$ signal. Verify that pins 1 and 15 of IC 6 A are at a logic 1 (approx. $4-5$ volts). Enter the following program in the Disk Jockey RAM.

Octal
342:000 072003343
342:003 303000342

Hex

E200	3A 03	E3	LOOP	LDA	HEAD
E203	C3	00	E2		JMP

Start this program and after a moment, stop the program. Verify that pins 1 and 15 of IC 6 A are now at a logic zero (approx. 0 volts). For the next test, it is necessary that pins 1 and 15 are at a logic zero. This completes the test of the Load Head Command.

Disk Function Register

This test is to be performed just after the Load Head Command test. Before the Disk Function Register is tested, pins 1 and 15 of IC 6A should be at a logic zero level. Enter the following program:

$342: 000$	062	011	342	E200	3ε	09	E2	LOOP
LDA	TEST							
$342: 003$	072	002	343	E203	3A 02 E3		STA	FUNCTION
$343: 006$	303	000	342	E206	C3 00 E2		JMP	LOOP
$343: 011$	XXX		E209	XX		TEST	DATA	

The above program is to be run with various values for DATA deposited in location TEST. With each value of DATA, pins $16,26,28,30,32,34$ and 36 of Jl are to be probed. For each different value of DATA, exactly one of these pins should be at a logic zero and all the rest at a logic one. The table below details what the different values for DATA should be and what pin of J1 should be and what pin of Jl should be at logic zero for the given value of DATA.

Value Deposited at location TEST
Octal Hex
00101

00202
00404
$020 \quad 10$
$040 \quad 20$
$100 \quad 40$
200
80

J1 Pin Which Should be at Logic Zero

Each time the value of TEST is changed, the short program at the beginning of this section should be run. While it is running, the various pins of Jl detailed above should be probed. After the pins have been checked, the program should be stopped and the next value in the table should be deposited at TEST, etc. This completes the test of the disk function register.

Disk Write Logic

If a logic probe or oscilliscope is available, attach it to pịn 38 of J1. Momentarily ground pin 1 of IC 13B. There should be a stream of negative pulses 250 ns wide, four microseconds apart. In any event, pin 1 of IC 3 C should be at a logic 1 as well as pin 40 of Jl . Enter the following program in the Disk Jockey RAM:

Octal
342:000 041000343
342:003 066377
342:005 303003342

Hex

E200	21	00 E 3	LOOP	LXI	H,DATA
E203	36	FF		MVI	M,377Q (FFH)
E205	C3	03	E2		JMP
LOOP					

Start the program. While the program is running, verify that pin 40 of Jl is now at a logic \emptyset. If a logic probe or oscilliscope is available, verify that pin 38 of Jl has a stream of negative pulses 250 ns wide, two microseconds apart. Also verify that pin 1 of IC 3C has a stream of negative pulses 250 ns wide, four microseconds apart. Stop the program. This completes the test of the disk write logic.

Disk Status Register

Generate a $\overline{\text { POC }}$ signal. Read the following list of values from location 343:002Q (E302H). Associated with each value is a pin \# of J1. In each case, ground only this pin while examining 343:002Q.

Value at $343: 002 Q$		
Octal	Hex	Pin Number of J1 to
be Grounded		

Serial Input Port

Generate a $\overline{P O C}$ signal. With a jumper connect J2 pin 1 to 11A pin 4. Examine location 343:002Q with this jumper in place and verify that 343:002 now contains the value 2. Disconnect the jumper. Examine location 343:003. Verify that the value of $343: 002$ is zero. This completes the test of the serial input port.

Serial Output Port

Generate a $\overline{P O C}$ signal. Verify that pin 2 of $\mathrm{J2}$ is at or near -12 volts. Enter the following program in the Disk Jockey RAM:

Octal

$342: 003$	062	003	343	E203	32	03	E3
			STA	SERIAL			
$342: 006$	303	000	342	E206	C3 00	E2	
342:011	XXX		E209	XX		TEST	DMP
LOOP							

DATA is to have two values: $400(20 \mathrm{H})$ and zero. Run the program with DATA $=\emptyset$ and verify that pin 2 of J 2 is at or near +12 volts. When DATA $=40 Q$, pin 2 of Jw should be at or near -12 volts.

This completes the preliminary check out of the Disk Jockey controller. Further check out will require that a drive be connected to the board.

CABLE ORIENTATION

The cable should be so that the ribbon cable leaves the connector toward the back of the computer and away from the component side of the Disk Jockey circuit board. Care should be exercised in fabricating a disk cable. The connectors at the cable ends must be oriented so that pin 2 of Jl matches pin 2 of the drive connector. A cable for Shugart drives is available from Thinker Toys.

DISK DRIVE CHECK OUT

The following tests can be conducted after the appropriate disk drive is connected to the Disk Jockey (via the 50 conductor cable) and proper power is furnished to the drive.

Track Zero Seek

Set up the disk drive so that it is drive \#1. Make sure that the head is away from the track zero sensor. Enter the following program into the memory of the host computer.

Insert a write protected diskette into the drive and close the door securely. Start the program. The head should load and move outward until it reaches track $\emptyset \emptyset$. After sixteen revolutions, the head should unload. Do not turn off power to the computer and drive between this test and the next. Do not change the stack pointer.

Seek and Disk Read

In the next test, be sure that a write protected disk which is cleanly initialized is inserted in the drive. Enter the following program:

Octal

100	016	002		START	MVI	C,2
102	315	014	340		CALL	TSEEK

Hex

40	OE 02	START	MVI	C,2
42	CD OC E0		CALL	TSEEK
45	OE O1		MVI	C,1
47	CD OF E0		CALL	SECTOR
$4 A$	21 00 01		LXI	H,100
40	$22 ~ 74 ~ E 2 ~$		SHLD	DMA
50	CD 15 EO		CALL	DISKR
53	C3 53 00	STOP	JMP	STOP

Power-Up and System Check Out

Start the program. The head should load and move to track 2 and unload after sixteen revolutions. Verify that the value 345 is contained in all memory locations between 1:000Q and 1:177Q.

This completes the check out of the Disk Jockey controller.

Power Supply

The board has a worst case requirement for

```
800 ma of +8V (between 7.5V and 11V)
100 ma of -16V (between -12.5V and -20V)
    30 ma of +16V (between +12.5V and +20V)
```

Plus 5 volt power (Vcc) is derived from the +8 V supply in the computer backplane by means of the 5 volt 7805/LM340.5 regulator with C2 and the small disk capacitors labeled on the circuit board legend providing power supply bypass capacitance.

The +12 V supply is derived from the backplane +16 V supply by zener CR3 and R28, filtered by C6.

The -12V supply is derived similarly from the backplane -16V supply by means of CR2, R27, and C5.

Floppy Disk Section System Clock

The basic timing for the DJ is derived from a crystal stabilized 74LS124 oscillating at 4 MHz . This clock signal is divided by two to produce 2 MHz SYS CLK frequency appropriate for a standard floppy at pin 9A-5. This signal is divided by two again to produce the 1 MHz SYS CLK appropriate for a mini-floppy at pin 9A-9. The appropriate frequency is selected by switch SW2 to drive the SYS CLK line. An inverted version of the system clock is generated at pin 10B-10.

Device Address Decoding

The Disk Jockey contains 256 bytes of RAM, 512 bytes of ROM, and I/0 registers. The memory address where each of these modules appears is controlled by the MMI6301 256x4 PROM in slot 8C. This PROM monitors the highorder address lines A8-A15. Connections to the chip select pins of SINTA, SINP, and SOUT make sure that the PROM is only active when the address present on the $\mathrm{S}-100$ bus is a valid memory address during either a bus memory read or write cycle.

Take, as an example, the $\overline{\text { RAM ENBL }}$ output of the PROM. Normally high, this output should go low when the address on A8-A15 corresponds to the high order address byte that should select the RAM. The PROM internally has 256 cells, each one selected by a different combination of the high order address bits. All of these cells have 1 stored in them except for the one corresponding to the address where the RAM should be located which has a 0 stored in it. Thus, when the CPU refers to any location within the 256 byte page of memory where the RAM should be located, the cell with the zero in it is selected by A8-A15 and the RAM ENBL output goes low, selecting the RAM (see System RAM below).

The firmware ROM, being 512x8, has two consecutively addressed bits of zero in the address decoding ROM pattern. Thus, the signal ROM ENBL is generated for either 256 byte page of ROM. Address line A8 also goes to these ROMs to allow them to decide which 256 byte page within them is being called for (see System ROM below).

Likewise, the signal $\overline{I / O E N B L}$ is generated when the CPU refers to memory addresses within the 256 byte page assigned to the I/O device registers.

The fourth output, $8 \mathrm{C}-9$, is programmed to go low if any of the other outputs of the address decoding ROM is low, that is, if the CPU is referring to any address within the DJ.

Internal Data Bus

Data flow in the floppy disk controller is organized around an eightbit wide internal data bus DATAO - DATA7.

When the CPU is writing to the RAM or an I/0 register, the S -100 bus signal MWRITE is high or $\overline{W R}$ is low. The WRITE line (5B-11) therefore goes low. Data flows from the S-100 bus data out lines (DOD - D07) through the 81LS97 in slot 9C to the internal data bus. Depending on what DJ register is being loaded, other control logic causes the data to be loaded from the internal data bus to the appropriate destination.

When the CPU is reading from the ROM, RAM, or I/O registers, other logic, detailed below, causes the selected data byte to be gated onto the internal data bus. When the line PDBIN goes high, indicating that the CPU is reading and the PROM in slot 8 C detects that the CPU is addressing a region of memory assigned to the DJ and therefore grounds pin $8 \mathrm{C}-9$, the signal INPUT ENBL goes low. Since pin 10C-1 is now low and pin 10C-19 high, the 74LS241 in slot 10C gates the data byte from the internal data bus to the $\mathrm{S}-100$ bus data lines (DID - D17).

Processor Wait States

Whenever a reference is made to the I/O registers of the Disk Jockey, the line PREADY is grounded to add two wait states to the CPU's cycle. The disk data transfer operations can require up to two processor cycles before they can obtain synchronization and ground PREADY to indicate that they require wait states. Two wait cycles are therefore added to every address reference within the Disk Jockey I/0 registers to make sure the CPU does not leave the wait state before the disk data transfer control logic can ground PREADY.

The two flip-flops in $1 B-9$ and $1 B-5$ act as a shift register to supply the two machine cycle delay required. These flip-flops are always cleared by PSYNC, connected in an inverted version to $1 B-13$ and $1 B-1$. 1B-5 will then stay low until the second negative edge of PHI-2 after PSYNC goes low. At this time, the high level connected to $1 B-12$ will appear at $1 B-5$ having been shifted through the two flip-flops. During this interval when

1B-5 is low, $3 B-11$ will be held low, so $3 B-8$ will be held high. This will happen whether or not the CPU is referencing the Disk Jockey. However, only if the CPU is referencing Disk Jockey I/0 registers will the signal $\bar{I} / 0$ ENBL be low, enabling the 74367 in slot $3 A$ to drive PREADY low. If necessary, the other inputs to gate 3 B (9 and 10) are driven low by the disk data transfer control logic before 3B-11 goes high to add additional wait states (see below).

Due to the high speed of the disk, the use of processor wait states is essential for synchronization. If a flag bit were provided which the processor could test to determine if the floppy disk was ready for data transfer and branch accordingly, the execution of this loop would take up too much time to allow transfer of data from memory to disk. The use of processor wait states, suggested by Eugene Fisher of Lawrence Livermore Laboratory, synchronizes the processor instruction execution to the disk data transfer and ensures sufficient time for each byte of data to be transferred from device registers to memory before the next byte must be transferred.

System RAM

The Disk Jockey contains two 2112256 word $\times 4$ bit RAMs located in slots 6 B and 7B. When the CPU during a read or write operation puts the address assigned to this RAM onto the high order S-100 bus address lines (A8-A15), RAM ENBL (8C-11) goes low. This signal activates the chip select pin (13) of both RAMs. Whether the RAM does a read or a write operation is controlled by the WRITE line which connects to the R/W pin (14) of both RAMs. During a write, data from the CPU flows from the internal data bus into the bidirectional I/0 pins of the RAMs. During a read, data from the RAMs flows out onto the internal data bus and from there onto the S-100 bus.

System ROM

The Disk Jockey is provided with two MMI6306 512 word $\times 4$ bit ROMs in slots 6 C and 7 C . These ROMs contain 512 bytes of disk utility software. When the address of the area of memory assigned to the ROM appears on the S-100 bus address lines (A8-A15), the signal ROM ENBL (8C-12) goes low. This enables the two ROMs by grounding their $\overline{C S}$ pin (13). The nine low order S-100 bus address bits (AØ - A8) specify to the R0Ms which word is to be read. The ROM drives the byte of software stored at this location onto the internal data bus.

I/0 Registers

When the address decoding PROM in slot 8C detects an S-100 bus memory reference to an address within the 256 byte page assigned to the $1 / 0$
 activates the 74LS155 decoder in slot 4C whose function is to decide which
of the eight $I / 0$ registers is being referred to. The four readable registers and the four writeable registers are each assigned a section of the decoder. The two low order $\mathrm{S}-100$ bus address bits select one of the four registers in each group. If the CPU is engaged in a write operation, the line WRITE will be low and the selected output of the "write section" decoder will go low (4C-9, 10, 11 or 12). If the CPU is engaged in a read operation, the line INPUT ENBL will be high, and the selected output of the read section of the decoder will go low (4C-4, 5, 6, or 7). Note that the definitions of WRITE and INPUT ENBL are such that either a write register or a read register will be selected, never both.

The uses of the $\overline{\text { READ DATA }}$, $\overline{W R I T E ~ D A T A, ~} \overline{\text { READ MARK, }}$, and WRITE MARK signals are discussed below under the disk data flow section.

The READ STATUS signal, when low, enables the 81 LS97 octal buffer in slot 4A, allowing the status byte (six bits of status from the floppy disk drive cable, the TTL level serial input, and the status of the head flipflop) to flow onto the internal data bus.

The $\overline{L O A D}$ HEAD signal, when low, resets the 74LS161 hex counter in slot 4B and sets the 74LS74 flip-flop in slot 10A. This flip-flop drives the LOAD HEAD signal to the disk drives and enables the 74368 driver in slot 6A. The 74368 driver at 6 A drives the disk select lines over the flat cable to the disk drive(s).

The WRITE FNCTN signal, when low, clocks the contents of the internal data bus into the 74LS273 octal register in slot 5A. Seven of the data bits set control lines to the floppy disk and are driven onto the flat cable from the 74LS273 outputs by the 74368 drivers in slots 3A and 6A. Bit 3 of the octal latch controls whether the read/write head will automatically unload after sixteen revolutions of the disk. The latch output at 5A-9 is connected to 4B-7, the enable input of a 74LS161 counter. This counter is reset to zero when the heads are loaded. The flip-flop in slot 10 A is also set to 1 enabling the 74368 to drive the current setting of the drive select lines and the load head signal onto the flat cable. If bit 3 specifies that automatic head unloading is not to take place, the counter is not enabled, and no counting takes place. If the bit enables the counter, then every time the index point of the disk is passed (assuming the correct setting of SW1), the pulse on 4B-2 will cause the counter to count up by 1. When the counter finally counts to 15, the carry output at 4B-15 will go high. This will clock the 74LS74 at 10A-11, which will load a \emptyset from the data input 10A-12. The head load flip-flop will therefore be reset, disabling the driver in slot 6A, deselecting all drives and causing the LOAD HEAD signal to become inactive. Note that there is no explicit command to unload the heads; it can only be done by this timeout mechanism.

The WRITE SERIAL signal clocks the 74LS74 serial out flip-flop at 10A-3 whose data input is bit 5 of the internal data bus. The flip-flop output 10A-5 drives the translator from TTL to RS232 levels for the serial output; 10A-6 controls the 20 ma TTY driver. These level translation circuits are discussed in more detail below.

Serial Communications Level Translators

Serial Input:
A terminal device is connected to either the RS-232 or the TTY input pin.

If the RS-232 input pin is at a "SPACE" leve1 (greater than 3 and less than 12 volts), transistor Q2 is cut off, so transistor Q1 is cut off, and the SERIAL INPUT line is pulled up to Vcc through R19 and the string of R5, R6, and R20. When the Read Status Register is read, the SERIAL INPUT 1 ine is gated onto bit 1 of the internal data bus through the 81 LS 97 in slot 4A, and a \emptyset appears in bit 1 of the word read. If the RS-232 input pin is at the "MARK" level (less than -3 but greater than -12 volts), current flows through transistor Q2, causing Q1 to pull the SERIAL INPUT line to ground. A 1 will therefore appear in bit 1 of the register when it is read.

If current is allowed to flow between the TTY+ input, through the terminal device, and back into the TTY- input (-12 volt return), representing the "MARK" condition, the voltage level at the SERIAL INPUT line is pulled down to approximately ground through R5 and R6. If no current is flowing ("SPACE"), the voltage level of the SERIAL INPUT line is pulled up to Vcc through R20, R5, and R6 (as well as R19).

Serial Output:
When the program writes a byte to the Write Serial Register, the signal WRITE SERIAL at pin 10A-3 clocks the value of bit 5 of the internal data bus into flip-flop 10A-5. The Q output 10A-5 is compared to a reference value of 1.6 volts developed by R15 and R14 at the 741 op amp. The output of the op amp will be saturated at approximately -12 volts for a "MARK" and approximately +12 volts for a "SPACE". This output drives the RS-232 level output through resistor R4. Capacitor Cl is required to lengthen the rise and fall time of the RS-232 output, as required by specifications.

Meanwhile, the \bar{Q} output 10A-6 is driving transistor $Q 3$ which acts as a current source for the TTY 20 ma output. If 10A-5 is set corresponding to the "MARK" condition, 10A-6 is low, current flows from Vcc, out the base of Q3, through R16, and into 10A-6. Q3 is turned on and approximately 20 ma of current will flow from Vcc, out the TTY+ output, in the TTY- output, and through R21 to ground. If the flip-flop is reset, corresponding to the "SPACE" condition, 10A-6 is sufficiently close to Vcc that the voltage at the base of Q3 will not turn on Q3. No current will flow out the TTY+ output in this condition.

When the power on clear signal $\overline{P 0 C}$ goes low, the flip-flop 10A-5 is set, putting both interface lines into the "MARK" state. This is the appropriate quiescent state for these lines.

Disk Data Flow

Before discussing the Write Data, Write Mark, Read Data, and Read Mark operations, it is necessary to consider the way that data is organized on the disk.

Each data bit is recorded on a small region of magnetic material that moves under the read/write head. This region is known as a bit cell. Since the disk is rotating under the read/write head at a fixed velocity, the bit cell also corresponds to a region of time.

Bit cells can contain one or two pulses, depending on whether the data recorded is a zero or a one. Bit cells start with a pulse known as the clock pulse. A fixed amount of time later will be a data pulse if the bit cell has a one recorded in it, or no data pulse if a zero is recorded.

A byte of data is recorded on the disk at eight consecutive bit cells. The most significant bit of the byte is the first bit recorded.

For more effective use of the disk surface, information stored on a track of the disk is traditionally divided into fixed size blocks of data called sectors. Sectors consist of a header field identifying track and sector number, a data area, and a checksum. A number of sectors follow each other in series around the circumference of the track. Gaps between the sectors and between the header field and the data area within each sector allow time for the write head to turn on or off so that one of these fields can be written without erasing the following field or sector.

There are two techniques in use to identify where on the track sectors begin. These techniques are referred to as hard sectoring and soft sectoring. Each of them will be discussed below.

Every diskette has a hole punched in it hear the hub. This hole, sensed by a phototransistor, identifies the beginning of the track. In the hard sectoring format, a similar hole is punched for each sector, indicating that the sector is about to begin.

Given the small physical size of information on the disk, it is impossible to accurately align a mechanical hole with the data recorded on the disk. The hole therefore only indicates that the track or sector is about to begin. An address mark is recorded just before the data on the disk. After the hole is sensed, it is necessary to wait until this recorded mark is detected, indicating the precise start of a sector. The soft sectored format relies solely on these recorded marks, making sector holes unnecessary.

There are actually four such marks. The Index Mark is used to indicate the beginning of each track. The Sector Mark is used to indicate the beginning of the header field of each sector. The Data Mark is used to indicate the start of the data area of each sector. The Deleted Data Mark can be used in place of the Data Mark to indicate an alternate type of data; in practice it is rarely used. The meaning of this last mark is up to the user.

What makes a mark immediately recognizable is that it is missing certain clock pulses. If we encode the clock bits from each bit cell into a byte of hexadecimal in the same manner as the data bits with a present clock pulse being considered a 1 and an absent clock pulse a \emptyset, we get the following pattern for the four marks:

	Data Bits	Clock Bits
Index Mark	FC	D7
Sector Mark	FE	C7
Data Mark	FB	C7
Deleted Data Mark	F8	C7

The Index Mark and Sector Marks are normally written onto a track only when the disk is initialized. The Deleted Data Mark is not used in standard format disks. The Data Mark is written each time the data area of a sector is updated.

The marks also serve another function: synchronization. Each separately writeable field on the disk must have a gap before and after it in which no meaningful information is recorded to allow time for the write head to turn on before writing and turn off after writing. These gaps are invariably filled with random magnetizations that would make any system lose track of where the byte divisions in the serially recorded bit stream are (to say nothing of which pulses are clock pulses and which pulses are data pulses). By a technique discussed below, the marks, which precede every field written on the disk, can be used to decide unambiguously where the clock pulse of the first bit cell of the first byte of the field begins.

The four disk data transfer operations have certain hardware in common. The basic timing for each bit cell is generated by four D flip-flops in slots 12 B and 13B. They are clocked by SYS CLK connected to pins 11 and 3. Arranged as a shift register, the flip-flops cycle through a sequence of eight states before repeating themselves as illustrated in Figure 1.

The first state represents the time period in which a clock pulse, if any, will occur. There are then three states which correspond to the interval of three clock periods before the data pulse. Then there is the state corresponding to the data pulse, followed by three more states representing the time from the data pulse to the end of the bit cell.

The counter in slot 13C is used to count the eight bit cells that comprise one byte. It is clocked by C CLK attached to pin 2, so that it changes state at the start of each bit cell. Although it is a divide by sixteen counter, it is used as a divide by eight counter (no connection is made to Q-D). In certain circumstances, it is necessary to set this counter to a certain state for synchronization purposes. This is accomplished by the signal $\overline{\mathrm{LD}}$, connected to pin 9, which loads the value 1100 binary into the counter on the next clock pulse when it is low. This value comes from the data in pins 6, 5, 4 and 3 which are strapped high or low as appropriate. Pin 6 could actually have been connected to Vcc or ground since Q_{D} is not used.

Figure 2 shows the states of this counter, starting with a load operation.

See Timing Diagram under Schematics

Two additional signals are derived from this counter: $\overline{E O C}$ (End of Character) is generated by gate 13A-6 during the C CLK period of the bit cell where the low order three bits of the counter have the binary value 110; EOW (End of Word) is generated by 13A-8 during the A CLK period of the following bit cell.

Let us now consider the actual data transfer operation.
WRITE DATA: When the WRITE DATA line goes low at pin 3C-9, 3C-8 goes high, clocking a \emptyset into flip-flop 2B-5. 3B-8 goes high, driving PREADY low. This halts the CPU until proper synchronization is obtained and the byte of data can be accepted from the S-100 data bus into the Disk Jockey. I/0 ENBL connected to 3A-15 provides insurance that the board can only halt the CPU when one of its registers is actually selected.

Since the bit cell and byte counters will be at an unpredictable point when the Write Data command is issued, it is necessary to wait until they come to the point indicating the start of a byte. This is done by flipflop 1C-5. When the byte counter reaches the EOC state and A CLK goes high, the 1 present on 2B- 6 since the write command was issued (WRITE SYNC) is loaded onto $1 \mathrm{C}-5$, and WRITE GATE goes high. In the next bit cell, EOW goes low, setting 2B-5, so WRITE SYNC goes low. Thus, on the positive edge of \bar{A} CLK in the next bit cell where EOC is high, WRITE GATE will go low. WRITE GATE will therefore be high for eight consecutive bit cells between two EOCs when a Write Data is being performed.

When WRITE GATE goes high, it drives 10B-1 1ow. As a result, 11B-9 and 118-3 stay high. This ensures that the bit cell counter cycles through its normal sequence of states without being set or reset.

Shift register 11C converts the data to be written from its parallel format on the internal data bus to the serial format that must be sent to the disk. It is clocked by the $\overline{A C L K}$ towards the end of each bit cell to set up the data for the next bit cell. During the first EOC after WRITE SYNC goes high, it is necessary to load the parallel byte of data written by the CPU into the shift register. Pin 5C-8 goes high during this time, driving 11C-9 high. This indicates the load function to the 74LS299 in slot 11-C. Accordingly, when the $\bar{A} C L K$ goes high, the byte of data from the internal data bus is loaded into the shift register from its bidirectional data pins. These pins are inputs since READ ATTN is low, so $11 \mathrm{C}-2$ is high.

On the next bit cell, the EOW signal becomes active. This resets WRITE SYNC. As a result, 2B-5 goes high, 3B-8 goes low, and PREADY goes high. The CPU is now free to leave the wait state; appropriate since the byte of data to be written to disk has been successfully loaded into shift register 11C.

Output Q-H of 11-C now has the first bit to be written to the disk. Since WRITE SYNC is no longer high, 11C-9 is low, conditioning the 74LS299 for a right shift operation. In subsequent bit cells, EOC will not be high, so 11C-9 will stay low, even if WRITE SYNC comes high again as a result of a subsequent write operation before the termination of the current one. Since 11C is now a shift register, when $\overline{A C L K}$ goes high at the end of each bit cell of the byte, the shift register shifts one position, presenting the next bit to be written serially to the disk at output 0-H. Gate 12C-8 combines the data bit with clocks to produce the WRITE DATA signal. This signal goes low during the appropriate time of a bit cell if a 1 is to be written to disk; it stays high if a zero is to be written.

Meanwhile, $\overline{W R I T E ~ C L O C K ~ p u l s e s ~ a r e ~ b e i n g ~ g e n e r a t e d ~ f o r ~ e a c h ~ b i t ~ c e l l ~}$ by 12C-6 at the appropriate time in each bit cell. 12C-2 is always a one since this is not a Write Mark operation and shift register 9B is therefore conditioned to shift in all ones from its serial input 9B-10. A clock pulse is therefore generated for every bit cell.

WRITE DATA and WRITE CLOCK are or'ed together by 3C-3 and driven onto the WRITE DISK DATA line to the write head of the disk by the 74368 in slot $3 A$. The WRITE GATE signal is also driven onto this cable to indicate to the floppy disk drive the time period during which the WRITE DISK DATA is meaningful.

When the last data bit has been shifted out of 11C, the byte has been successfully written to disk. If the CPU has issued another Write Data command while the first byte was being shifted out, this new byte will be loaded into 11C during the EOC period and the process will repeat itself. WRITE GATE will stay high since WRITE SYNC will have been set again. If no further data bytes were written, WRITE SYNC will be low, and WRITE GATE will go low during EOC on the positive edge of A CLK (the end of the last bit cell of the character).

A Write Mark operation is identical to a Write Data operation except that the byte of data is written with certain clock pulses missing. Shift register 9 B is responsible for generating the correct pattern of missing clock pulses during the eight bit cells. This register is clocked by A CLK. When WRITE MARK is low, during the EOC period when data is being loaded into the data shift register, $8 \mathrm{~B}-3$ goes low and the pattern present at the data inputs to 9 B is loaded into it . This pattern is then shifted out during the next eight bit cells analagously to the data bits, with a one providing a clock pulse for the bit cell and a zero providing a missing clock pulse.

The pattern of missing clocks can be a hexadecimal C7 or D7, depending on which mark is to be written. Gates 10B-13 and 5B-6 decode from the data pattern of the mark which clock pattern is appropriate and provide the appropriate level to $9 \mathrm{~B}-3$ for parallel loading into the shift register.

READ MARK: The Read Mark operation performs two functions: (1) to synchronize the data separator logic (flip-flops 12B and 13B) and the byte counter (13C); and, (2) to read the data pattern of the mark so that software can determine which of the four types of mark it is (see above).

When the $\overline{R E A D}$ MARK signal goes low, 5C-6 goes high, clocking a one into $2 C-5$ ($\overline{L D}$ and $A \emptyset$ are both high at this time, so $2 C-1$ is high). The output of 0 R gate $8 \mathrm{~B}-6$ is therefore high, putting the set input $2 \mathrm{~B}-10$ into its inactive state.

Meanwhile READ MARK going low causes $3 C-6$ (READ ATTN) to go high, clocking a \emptyset into $2 \mathrm{~B}-9$. This causes $3 \mathrm{~B}-9$ to go low, $3 \mathrm{~B}-8$ to go high, so PREADY goes low, putting the CPU into a wait state until the mark is detected.
$\overline{\text { DISK DATA }}$-- the serial stream of clock and data pulses from the disk enters gate 10B-3 from the disk drive cable. Since this is a read operation, WRITE GATE will be low and DISK DATA will appear at 10B-1. A pulse on this line will be routed to $\overline{\text { DATA }}$ or to reset ($\overline{R E S E T}$) flip-flops $12-\mathrm{B}$ and $13-\mathrm{B}$
depending on whether A CLK is high or low respectively. A CLK therefore defines the time window in which a pulse from DISK DATA is interpreted as a clock or a data pulse. If A CLK is high, the pulse is a data pulse; if it is low, it is a clock pulse. Nominally, data pulses should occur when the flip-flops are all set and clock pulses should occur when the flip-flops are all reset. The pulse from the disk by setting the flipflops to all zeros will force the flip-flops to this exact synchronization if the pulse occurs any time within the A CLK window.

Register 7A wired to act like a shift register has the function of counting missing clock pulses. It is clocked on the positive edge of A^{\prime} CLK just after the clock pulse nominally occurs. Since the head is loaded, HEAD is high and ONE comes high. The register is reset by $\overline{\text { RESET }}$ which goes low whenever a clock pulse is detected from the disk. In normal operation, ONE will go high between clock pulses, but be reset by each clock pulse. If a clock pulse is missing, however, the register will not be reset and TWO will come high just after the first missing clock pulse.should have occurred. If three missing clock pulses occur in a row, FOUR will come high. As will be discussed in a moment, this condition occurs when an address mark with three missing clock pulses is read. Four missing clock pulses cause OUT OF PHASE to go high. There are only two possible explanations of four missing clock pulses: garbage is being read off the disk or the system has its timing backwards and is interpreting data pulses as clock pulses and vice versa. If the missing "clock pulses" is actually supposed to be a data pulse, the correct response is to reset the system timing and interpret the next pulse as a clock pulse.

As can be seen on the prints, OUT OF PHASE going high forces 10B-4 low and 11B-14 high, routing the next pulse from DISK DATA to the RESET line, i.e., interpreting it as a clock pulse. While this may not help much if garbage is being read off the disk, this technique guarantees that the system will be correctly distinguishing clock and data pulses within several bit cells after the start of a field of data zeros on the disk (since the missing data pulses of the zeros will continually trigger the missing clock detection logic if the system is out of sync). The recording standards for floppy disks require that six bytes of zeros be written before any address mark for this reason. This function is automatically carried out by Disk Jockey firmware when standard subroutines are used to write data sectors. As a result, one can guarantee that clock and data pulses are being correctly interpreted by the start of the address mark. Now it only remains to figure out which bit cell starts a byte of recorded data.

The System Timing Diagram shows the response of the circuitry to the last bit cell of the zero field followed by an address mark. The first two bit cells of the address mark are ones with normal clock pulses. The next three bit cells have missing clock pulses, denoted by dotted lines. As a result, the line FOUR will be high after the third missing clock pulse. On the next positive edge of $\overline{C C L K}, \overline{L D}$ will be low, since READ MARK, FOUR and $\overline{E O W}$ will be high ($\overline{E O W}$ must be high since A^{\prime} CLK is low at the positive edge of \bar{C} CLK $)$. Byte counter 13C will therefore load the value 1100 from its data inputs ($13 C-6,5,4$, and 3), establishing synchronization of bit
cells, reaching the value 111 at the start of the next byte. As can be seen, $\overline{E O C}$ will be low during the last bit cell of the byte, and EOW will be low during the first bit cell of the next byte, which is the correct synchronization for these signals.

The $\overline{L D}$ signal also goes to $5 B-1$. Since $A D$ is high (the address of the Read Mark Register being odd), 2C-1 goes low, $2 \mathrm{C}-5$ goes low, and $8 \mathrm{~B}-4$ goes low. This indicates that synchronization of the byte counter has been obtained. As a result, the next time EOW goes low, slightly into the first bit cell of the following byte, $8 \mathrm{~B}-6$ goes low, $2 \mathrm{~B}-10$ goes 1 low , and $2 \mathrm{~B}-9$ goes high. The CPU is therefore allowed to leave the wait state, terminating the READ MARK operation.

Parallel to this activity, the data bits of the mark have been collected. Flip-flop 2C-9 is reset by B CLK during the clock period of each bit cell. It will then be set by DATA if there is a pulse during the data pulse period of the bit cell (corresponding to a recorded 1 bit) or 2C-9 will stay at \emptyset if there is no DATA pulse corresponding to a recorded \emptyset.

The READ DATA signal generated by this flip-flop goes to the serial input of shift register 11C. 11C is conditioned to act as a shift register since WRITE SYNC is low at $3 \mathrm{~B}-5$ so $11 \mathrm{C}-19$ must be low. The data bit is shifted into the register on the positive edge of $\overline{\mathrm{A} C L K}$, shortly after it is detected.

READ ATTN being high at 11B-13 puts 11C-2 low, enabling the byte stored in the shift register onto the internal data bus. Thus, when the CPU is released from the wait state at the end of a read operation, the last eight data bits collected will be available on the $S-100$ bus data in lines. The CPU will read this byte before the next positive edge of \bar{A} CLK reads the next bit into the register.

READ DATA: Read Data is simpler than Read Mark since all counters are al ready running in sync. The normal state of shift register 11C is to collect the read data coming in from the disk. When the READ DATA line goes Iow at 3C-5, READ ATTN goes high, enabling the contents of $11 C$ onto the internal data bus and loading flip-flop 2B-9 with a \emptyset, putting the CPU into the wait state. When the byte currently being read has been completely loaded into shift register 11C, EOW goes low. Since the Read Data Register is at an even address, $A D$ is low, so $2 \mathrm{C}-1$ is low, $2 \mathrm{C}-5$ is low, and $8 \mathrm{~B}-4$ is low. 8B-6 therefore goes low, setting $2 B-9$ to 1 and the $C P U$ leaves the wait state and reads in the collected byte.

Note that while both READ MARK and READ DATA release the CPU from the wait state slightly into the byte after the one being read, this still leaves adequate time for the CPU to read the current byte and issue a new READ DATA instruction before the new data byte has been assembled from the disk (EOW going low). Since read data is continuously collected in shift register 11C, it is therefore no problem to read a series of bytes from the disk.

THE DISK JOCKEY SHUGART FIRMWARE

THE DISK JOCKEY Shugart firmware					
	340:000	ORIGIN EQU 340:0000			
	343:000	READOATA EQU ORIGIN +300 H			
	343:001	readmark equ readoata 1			
	343:002	STATUS EQU REAOOATA+2			
	343:003	LOADHEAD EQU READOATA+3			
	343:000				
	343:001	WRITEOATA EQU REAOOATA WRITEMARK EQU READMARK			
	343:002				
	343:003	DISKFNCT EQU STATUSSERIAL EQU LOAOHEAO			
	342:166	SERIAL EQU LOAOHEAO BUFFER EQU ORIGIN+2:1660			
	342:171	BUFFER EQU ORIGIN+2:166Q SECREG EQU BUFFER+3			
	342:164	SECREG EQU BUFFER +3 OMAADOR EOU BUFFER-2			
	342:175	OATAMARK EOU BUFFER +7			
	342:375	LASTDATA EQU DATAMARK+200Q			
	342:163	DRIVE EQU BUFFER-3			
	342:160	SCON EQU BUFFER-6			
	000:010	TZERO EQU 100			
	000:024	MOVIN EQU 240			
	000:020	MVOUT EQU 200			
	000:020	STEP EQU 200			
	000:010	TCONST EQU 100			
	000:143	MSEC EQU 1430			
	000:043	SETTLE EQU 35			
340:000	303033340	DBOOT	JMP	BOOT	
003	303100340	TERMIN	JMP	INPUT	
006	303155340	TRMOUT	JMP	OUTPUT	
011	303252341	TKZERO	JMP	HOME	
014	303204341	TRKSET	JMP	SEEK	
017	303047341	SECTOR	JMP	SETSEC	
022	303077341	DMA	JMP	SETOMA	
025	303305340	REAO	JMP	dread	
030	303214340	WRITE	JMP	OWRITE	
033	061166342	800 T	LXI	SP, BUFFER	Initialize stack pointer
036	041041000		LXI	H,410	Sfirial constant
041	076210		MVI	A,2109	drive a select constant
043	001200000		LXI	B,200Q	BOOTSTRAP LOAD ADDRESS
046	305		PUSH	B	INITIALI2E
047	365		PUSH	PSW	THE
050	345		PUSH	H	SYSTEM FOR
051	305		PUSH	B	BOOTSTRAP
052	062002343		STA	STATUS	load
055	315252341	BLOOP	CALL	HOME	move heao to track 2ero
060	016001		MVI	C, 1	Initiali2e
062	315047341		CALL	SETSEC	SECTOR

Oisk Jockey Firmware

Disk Jockey Firmware

58

$31: 045$	016	001	
047	171		
050	346	037	
052	310		
053	117		
054	306	345	
056	237		
057	300		
060	041	171	342
063	161		
064	315	116	341
067	161		
070	043		
071	160		
072	043		
073	066	373	
075	257		
076	311		

077041000
02174
$\begin{array}{ll}103 & 270 \\ 04 & 310\end{array}$

10507
070

$\begin{array}{ll}105 & 270 \\ 107 & 310\end{array}$
$\begin{array}{ll}107 & 310 \\ 10 & 140 \\ 11 & 151\end{array}$
$\begin{array}{ll}11 & 151 \\ 12 & 042 \\ 1164\end{array}$
$\begin{array}{lll}12 & 042 & 1 \\ 15 & 311\end{array}$

5ETSEC
5ECTOR NUMBER ON

5ETDMA

SETCRC
CRECH
$\begin{array}{llll}041 & 166 & 342 \\ 021 & 172 & 342\end{array}$ 021172342
001377377
$\begin{array}{ll}24 & 001 \\ 27 & 325\end{array}$
$\begin{array}{ll}27 & 32 \\ 30 & 17\end{array}$
$\begin{array}{ll}130 & 176 \\ 31 & 25 \\ 132 & 127\end{array}$
3301
13401 $\begin{array}{ll}35 & 017 \\ 36 & 017\end{array}$
$\begin{array}{llll}37 & 346 & 017\end{array}$
$141 \quad 252$
$\begin{array}{lll}142 & 137 \\ 143 & 017\end{array}$
$\begin{array}{ll}143 & 017 \\ 144 & 017\end{array}$
$\begin{array}{ll}144 & 017 \\ 145 & 017\end{array}$
$46 \quad 127$
$\begin{array}{lll}47 & 346 & 037\end{array}$
$151 \quad 250$

MYI	C,1
MOV	A,C
ANI	$37 Q$
RZ	
MOV	C,A
AOI	3450
$5 B B$	A
RNZ	
LXI	$H, S E C R E G$
MOV	M,C
CALL	$5 E T C R C$
MOV	M,C
INX	H
MOV	M,B
INX	H
MVI	M,OFBH
XRA	A
RET	

Save TRImmed value
TE5T FOR GREATER
THAN 26
SAVE SECTOR VALUE $\&$ COMPUTE HEAOER CHECX SUM SAVE
SAVE
CHECX SUM
AT END
OF SECTOR

$$
\begin{aligned}
& \text { HEADER \& AL50 } \\
& \text { WRITE DATA MARK }
\end{aligned}
$$

H, ORI
A, H
A
B
L,C
DMAADOR
H,BUFFER
H,BUFFER
$0,5 E C R E G+1$
$8,-1$
忈
C
D, A
${ }_{0}^{\mathrm{OFH}}$
0
E, A
D, A
1 FH

Disk Jockey Firmware

Disk Jockey Firmware

Disk Jockey Firmware

340:314	005			OCR		CRAP IN
+315	302	313340		JNZ	RWAIT	THE GAP
320	072	001343		LDA	READMARK	WAIT FOR A MARK
323	276			CMP	M	LODK FOR ANOTHER
324	302	305340		Jnz	OREAD	SECTOR IF NO MARK
327	054			INR	L	AOVANCE POINTER
330	032		RLOOP	LOAX	D	GET DISK DATA
331	167			MOV	M, A	STORE IN BUFFER
332	054			INR	L	ADVANCE POINTER
333	302	330340		JNZ	RLOOP	\& TEST IF DONE
336	055			OCR	L	BACK UP PDINTER
337	353			XCHG		SAVE IN D-E PAIR
340	041	175342		LXI	H, OATAMARK	
343	315	124341		CALL	CRECH	CALCULATE CRC
346	171			MOV	A, C	\& TEST
347	260			ORA	B	FOR ZERO
350	076	00 I		MVI	A, 1	
352	300			PNZ		RETURN IF CRC ERROR
353	021	176342		LX]	D, DATAMARK+1	
356	052	164342		LHLO	DMAADOR	
361	353			XCHG		GET REAOY FOR OMA XFER
362	033			DCX	0	
363	D06	200	XFER	MVI	B,200Q	
365	176			MOV	A.M	GET DISK DATA
366	023			InX	0	
367	022			STAX	0	StDRE IN MEMORY
370	043			INX	H	
371	005			OCR	B $X F E R+2$	DECREMENT BYTE COUNT \& TEST FDR DONE
372	302	365340		JNZ	XFER+2	\& TEST FDR DONE
375	170			MOV	A, B	
376	311			RET		
$\begin{array}{r} 377 \\ 341: 002 \end{array}$	315	355341	RSECT	$\begin{aligned} & \text { CALL } \\ & \text { RNZ } \end{aligned}$	LOHEAD	 TEST FOR READY
003	041	166342		[X]	H,BUFFER	SECTOR HEADER MARK
006	006	D07		MV]	B. 7	SECTOR HEADER CDUNT
010	033			DCX	D	ADJUST TO READ
011	033			OCX	0	dISK DATA
012	032		ZWAIT	LDAX	0	REAO DISK OATA
013	247			ANA	A	SEE FLAGS
014	302	012341		JN2	ZWAIT	TEST FOR ZERO
017	072	001343		LDA	PEADMARK	READ A MARK
022	276			CMP	M	COMPARE WITH HEAOER
023	302	377340		JNZ	RSECT	READ NEXT HEADER IF ERROR
026	043		TSLDOP	INX	H	ADVANCE BUFFER POINTER
027	005			OCR	B	DECREMENT HEADER CDUNT
030	310			R2		RETURN IF DONE
031	032			LDAX	0	READ OISK OATA
032	276			CMP	M	COMPARE WITH MEMORY
033	312	2026 341		J2	TSLOOP	REAO MORE IF NO ERROR
036	076	005		MVI	A, 5	TEST FDR
04D	22 D			SUB	B	WRDNG TRACK
041	370			RM		NUMBER
042	303	377340		JMP	RSECT	NOT A TRACK ERROR

0isk Jockey Firmware

60

E020	co at El	BLOOP	CALL	HOME
ED30	DE D1		MVI	C, 1
ED32	CD 27 E1		CALL	SETSEC
E035	CD C5 ED		CALL	OREAD
E038	C2 20 E0		JNZ	BLOOP
E038	C9		RET	
ED3C	76		HLT	
ED30	76		HLT	
E03E	0002		OS	2
E040	06 B0	INPUT	MV1	B,2000
E042	2A 70 E2		LHLO	SCON
E045	1102 E 3		LXI	D,STATUS
E048	1 A	WAIT	LOAX	0
E049	1 F		RAR	
E04A	1F		RAR	
E048	OA 4B EO		JC	WA1T
ED4E	CO 85 E0		CALL	XLOOP
ED51	1A		LOAX	0
E052	$1 F$		RAR	
E053	1F		RAR	
E054	OA 40 EO		JC	INPUT
E057	CO 81 E0	DATAL	CALL	SOELAY
E05A	1 A		LDAX	0
E05B	1 F		RAR	
EDSC	1 F		RAR	
E05D	78		Mov	A, B
E05E	1 F		RAR	
ED5F	47		MDV	B, A
E060	0257 E0		JNC	DATAL
E063	CO 81 E0		CALL	SoELAY
ED66	CO B1 ED		CALL	SDELAY
ED69	78		MOV	A, B
E06A	E6 7F		ANI	1770
E06C	C9		RET	
E060	$1103 \mathrm{E3}$	OUTPUT	LXI	D,SERIAL
E070	B7		ADO	
E071	OE OB		MVI	C, 11
E073	37	OLOOP	STC	
E074	$1 F$		RAR	
E075	47		MOV	B,A
E076	9 F		S8B	A
E077	12		STAX	0
E07B	CD B1 ED		CALL	soelay
E07B	7B		MOV	A, ${ }^{\text {B }}$
E07C	DO		DCR	C
E07D	C2 73 E 0		UNZ	OLOOP
E080	C9		RET	

Disk Jockey Firmware

EDB1	2A 70 E 2	SDELAY	LHLO	SCON
E084	29		DAO	
E085	28	XLOOP	DCX	H
E086	7C		MOV	A, H
EDB7	85		ORA	
EDB8	C2 85 EO		JNZ	XLOOP
EOBB	C9		RET	
EOBC	COEOEI	OWRITE	CALL	LDHEAO
E08F	IA		LDAX	0
E090	E6 01		AMI	1
E092	CO		RMZ	
E093	2A 74 E 2		LHLD	OMAADOR
E096	1170 E 2		LXI	0 DATAMARK
E099	05		PUSH	0
E09A	CO F3 ED		CALL	XFER
E090	E1		POP	
E09E	CO 54 El		CALL	CRECH
EDA1	71		MOV	M, C
EDA2	23		1NX	H
EOA3	70		MOV	M, B
EDA4	DE D7		MVI	C, 7
EOA6	CD FF EO		CALL	RSECT
EOA9	CO		RNZ	
EDAA	06 OA		MVI	B, 10
EDAC	1A	FLOOP	LOAX	0
EOAD	05		OCR	
EDAE	C2 AC E0		JNZ	FLOOP
EOB1	AF		XRA	A
E082	12	ZLOOP	STAX	0
E083	, 00		OCR	
E084	C2 B2 E0		JNZ	ZLOOP
E0B7	13		INX	0
EOBB	7E		MOV	A, M
E089	12		STAX	0
EDBA	18		OCX	0
EDBB	23		INX	H
EDBC	7E	WLOOP	MOV	A.M
EDBD	12		STAX	0
EDBE	2 C		1NR	
EOBF	C2 BC EO		JNZ	WLOOP
EDC2	AF		XRA	A
EDC3	12		STAX	0
EDC4	C9		RET	
E0C5	CO FF EO	DREAD	CALL	RSECT
E0C8	CO		RNZ	
E0C9	06 OE		MV1	8,14
EOCB	1 A	RWAIT	LOAX	0
EOCC	05		OCR	8
EOCO	C2 CB EO		JNZ	RHAIT
E0DO	3A 01 E3		LDA	READMARK
E003	- BE		CMP	M
E004	C2 C5 E0		JNZ	OREAO

O1sk Jockey Firmware

341:276	032	010		LDAX	0	
- 277	346			ANI	TZERO	TEST FOR TRACK ZERO
301	312	271341		J2	STEPO	
304	257			XRA	A	
305	041	166342		LXI	H, BUFFER	SET UP DATA
310		376	ILOOP	MVI	M, OFEH	BUFFER
312	054			INR	L	FOR TRACK
313	312	045341		J2	SETSEC-2	
316	167			MOV	M, A	SECTOR ZERD
317	303	312341		JMP	ILOOP	
322	072	163342	toelay	LOA	DRIVE	get active drive number
325	365			PUSH	PSW	
326	346	353		ANI	3530	
330	250			XRA	8	MERGE OIRECTION \& STEP
331	022			Stax	0	SENO TO ORIVE
332	356	020		XRI	STEP	FINISH STEP PULSE
334	022			STAX	0	SENO TO ORIVE
335	361			POP	PSW	
336	022			STAX	0	
337	006	010		MVI	B,TCONST	HEAO MOTION CONS TANT
341	076		oelay	MVI	A,MSEC	OELAY
343	177			MOY	A, A	
344	075			OCR	A	ONE
345	302	343341		JNZ	DELAY+2	MILLESECOND
¢ 0350	005			OCR	8	TEST FOR OELAY
- 351	302	341341		JNZ	OELAY	ONE
354	311			RET		
355	021	002343	LDHEAO	LXI	0. status	OISK STATUS MEM LOC
360	032			LOAX	0	GET STATUS BYTE
361	346	004		ANI	4	STRIP OFF HEAD LOAO BIT
363	072	003343		LOA	LOADHEAD	LOAO HEAO \& SELECT DRIVE
365	006	043		MVI	B, SETTLE	HEAO LOAO SETTLE TIME
370	314	341341		CZ	OELAY	CONDITIONALLY WAIT FOR SETTLE
373	032			LOAX	0	GET STATUS
374	027			RAL		SET ACC TO 3770
375	237			SBB	A	OR ZERO THE ACC FOR
376	074			INR	A	REAOY FLAG TO SYSTEM
377	311			RET		

origin equ READOATA EQU DRIGIN +300 H READMARK EQU READOATA+1 STATUS EQU REAOOATA+2 LOADHEAD EQU REAOOATA +3
WRITEDATA EQU READOATA
WRITEMARK EQU REAOMARK
OISKFNCT EQU STATUS
SERIAL EqU LOADHEAD
BUFFER EQU ORIGIN+2:1660
SECREG EQU BUFFER+3
OATAMARX EQU BUFFER +7
LASTOATA EQU OATAMARK+2000
DRIVE EQU BUFFER-3
DRIVE EQU BUFFER-3
SCON EQU BUFFER-6

TZERO	EQU	100
MOVIN	EQU	240
MVOUT	EQU	200
STEP	EQU	200
TCONST	EQU	100
MSEC	EQU	1430
SETTLE	EQU	35

$\begin{array}{llll}\text { E000 } & C 3 & 1 B & E O \\ E 003 & C 3 & 40 & E O \\ E 006 & C 3 & 60 & E O \\ E 009 & C 3 & A A & E 1 \\ E 00 C & C 3 & B 4 & E 1 \\ E 00 F & C 3 & 27 & E 1 \\ E 012 & C 3 & 3 F & E 1 \\ E 015 & C 3 & C 5 & E 0 \\ E O 1 B & C 3 & B C & E O \\ & & \\ E 01 B & 31 & 76 & E 2 \\ E O 1 E & 21 & 21 & 00 \\ E 021 & 3 E & B B & \\ E 023 & 01 & B 0 & 00 \\ E 026 & C 5 & \\ E 027 & F 5 & \\ E 02 B & E 5 & \\ E 029 & C 5 & \\ E O 2 A & 32 & 02 & E 3\end{array}$

OBOOT
 REAO WRITE

$\begin{array}{lll}\text { TERMIN } & \text { JMP } & \text { BOOT } \\ \text { TRMOUT } & \text { JMP } & \text { OUTPUT } \\ \text { TKZERO } & \text { JMP } & \text { HOME }\end{array}$
$\begin{array}{lll}\text { TKZERO } & \text { JMP } & \text { HOME } \\ \text { TRKSET }\end{array}$
SECTOR JMP SETSEC
DMA JMP SETOMA J.JMP

DWRITE

B00T

LXI	SP, BUFFER
LXI	H,41Q
MVI	A,210Q
LXI	B,200Q
PUSH	B
PUSH	PSW
PUSH	H
PUSH	B
STA	STATUS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{5}{|l|}{Disk Jockey Firmware} \& \multicolumn{5}{|l|}{Disk Jockey Firmware}

\hline \& E007 \& 2 C \& \& INR \& 1 \& E125 \& OE 01 \& \& MVI \& C, 1

\hline \& EODB \& 1 A \& RLOOP \& LOAX \& , \& E127 \& 79 \& SETSEC \& MOV \& ${ }_{3}, 6$

\hline \& E009 \& 77 \& \& mov \& M,A \& E128 \& $\mathrm{EGF}^{1 F}$ \& \& ${ }_{\text {ANI }}$ \& 379

\hline \& EDDA \& 2 C \& \& INR \& L \& E12A \& ${ }_{48}^{C B}$ \& \& R2 \&

\hline \& E008 \& C2 OB $£ 0$ \& \& JNZ \& RLOOP \& E128 \& ${ }^{4 F}$ \& \& M00 \& c.
3450

\hline \& EOOE \& 2 D \& \& ${ }^{\text {OCR }}$ \& L \& E12¢ \& ${ }_{96}{ }^{\text {c6 }}$ E \& \& ${ }_{\text {SBB }}$ \&

\hline \& EOf0 \& 2170 E2 \& \& LXI \& h, oatamark \& E12F \& co \& \& RNZ \&

\hline \& EDE3 \& C0 54 E1 \& \& CALL \& CRECH \& E130 \& 2179 E2 \& \& LXI \& H,5ECREG

\hline \& E0¢6 \& 79 \& \& mov \& A, C \& E133 \& 71 \& \& MOV \&

\hline \& Eoet \& во \& \& ORA \& ${ }^{\text {B }}$ \& E134 \& CO 4E E1 \& \& CALL \& SETCRC

\hline \& EOE8 \& 3 E 01 \& \& MVI \& A, 1 \& E137 \& 71 \& \& MOV \&

\hline \& EOEA \& CO \& \& \& D, datamark +1 \& E138
E139 \& 23
70 \& \& INOV \& ${ }_{M, B}$

\hline \& EOEE \& 2A 74 E 2 \& \& LHLO \& DMAAOOR \& E13A \& 23 \& \& InX \&

\hline \& E0f1 \& ¢ \& \& XCHG \& \& E138 \& 36 FB \& \& MVI \& M, DFBH

\hline \& EOF2 \& 18 \& \& DCX \& 0 \& E130 \& ${ }_{\text {AF }}$ \& \& XRA \&

\hline \& EDF3 \& ${ }^{06} 80$ \& XFER \& MVI \& B,2009 \& E13E \& C9 \& \& REt \&

\hline \& EOF5 \& 7 F \& \& Mov \& A,M
0 \& E13F \& \& SETDMA \& LXI \& H,ORIGIN+2:000Q

\hline \& EDF6 \& 13 \& \& ${ }_{\text {STAX }}$ \& 0 \& E142 \& 7 C \& \& MOY \& A, ${ }^{\text {a }}$

\hline \& EOFB \& 23 \& \& InX \& H \& E143 \& BB \& \& CMP \& B

\hline \& E0F9 \& 05 \& \& OCR \& - \& E144 \& CB \& \& RZ \&

\hline \& EOFA \& C2 F5 E0 \& \& JNZ \& XFER+2 \& E145 \& ${ }^{3 C}$ \& \& ${ }_{\substack{\text { CMP } \\ \text { CMP }}}$ \& A

\hline \& EDFD \& 78

c9 \& \& MEV \& A, ${ }^{\text {B }}$ \& E146 \& ${ }_{\text {cb }}^{\text {B8 }}$ \& \& CMP \& B

\hline \& \& \& \& \& \& E14B \& 60 \& \& mov \& H, ${ }^{\text {B }}$

\hline \multirow[t]{19}{*}{9} \& EDFF \& CD ED E1 \& RSECT \& CALL \& LDHEAD \& E149 \& \& \& MOV \& L,C

\hline \& E102 \& \& \& RN2 \& \& E14A \& 2274 E2 \& \& ${ }_{\text {SRET }}$ \& OMARODR

\hline \& E103 \& 21
06
06
06 \& \& ${ }_{\text {LXI }}$ \& $\underset{\substack{\text { H,BuFfer } \\ B, 7}}{ }$ \& E140 \& C9 \& \& RET \&

\hline \& E108 \& ${ }_{18}$ \& \& DCX \& 0 \& E14E \& 2176 E2 \& SETCRC \& LXI \& H,BUFFER

\hline \& E109 \& 18 \& \& DCX \& 0 \& E151 \& 11 7A E2 \& \& LXI \& 0, 5ECREG+1

\hline \& E10A \& 1 A \& 2WAIT \& Loax \& 0 \& E154 \& D1 FF FF \& CRECH \& \& $8,-1$

\hline \& E108 \& ${ }_{\text {A7 }}^{\text {C2 }}$ OA E1 \& \& ANA \& Z A AIT \& E158 \& 75 \& \& MDV \& A,M

\hline \& E10F \& 3A D1 E3 \& \& LDA \& READMARK \& ¢159 \& A9 \& \& XRA \&

\hline \& E112 \& BE \& \& CMP \& \& E15A \& 57 \& \& MOV \& D,A

\hline \& E113 \& ${ }_{23} \mathbf{C 2}$ FF E0 \& TSLOOP \& JN2 \& ${ }_{\text {R }}$ \& E158 \& ${ }_{\text {OF }}$ \& \& $\stackrel{\text { RRC }}{ }$ \&

\hline \& E117 \& 05 \& \& DCR \& \& E150 \& Of \& \& RRC \&

\hline \& E118. \& CB \& \& R2 \& \& E15E \& OF \& \& RRC \&

\hline \& E119 \& 1 A \& \& LOAX \& 0 \& E15F \& E6 DF \& \& ANI \& $\mathrm{OFH}^{\text {O }}$

\hline \& E11A \& ${ }_{\text {CA }}^{\text {CA }} 16 \mathrm{El}$ \& \& ${ }_{\text {cmp }}$ \& MSLOOP \& E161 \& | AA |
| :--- |
| 5 | \& \& KRA \& E, A

\hline \& E11E \& 3 O 05 \& \& MVI \& A, 5 \& E163 \& OF \& \& RRC \&

\hline \& E120 \& 9 D \& \& SUB \& B \& E164 \& DF \& \& RRC \&

\hline \& \& \& \& RM \& \& E165 \& of \& \& RRC \&

\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{E122 C3 fF E0}} \& \& JMP \& RSECT \& E166 \& 57 \& \& MOV \& O, A

\hline \& \& \& \& \& \& E169 \& ${ }_{\text {A8 }}{ }^{\text {lf }}$ \& \& XRA \& fr

\hline
\end{tabular}

Acknowledgment

Like many other. Thinker Toy products designed by Morrow, the Disk Jockey I controller utilizes the power of the CPU to accomplish many of its I/0 tasks. However, unlike other Thinker Toy products, the key idea which makes the interface work is not the "brain child" of George Morrow. The Disk Jockey controller uses the CPU's "READY" line in a novel fashion. This unusual use of READY first appeared in an article by Eugene Fisher in the November 8, 1975 issue of Electronics Design Magazine. Mr. Fisher's penetrating insight into the effective use of the microcomputer to control a floppy disk has served as an inspiration in the design of the Disk Jockey controller.

Warranty

Parts are warranted to be free from defects in material and workmanship. Parts for the Disk Jockey I purchased in kit form is warranted for ninty days from invoice/purchase date. The Disk Jockey I purchased as an assembled unit or as part of the DISCUS I system is warranted for six months from invoice/purchase date. Any board purchased in kit form which is returned for testing/repair is subject to a fee of up to $\$ 35.00$. Any out-of-warranty repair of up to $\$ 35.00$ will be made without prior approval of customer.

Parts and labor warranty for the disk drive is for forty-five days from invoice/purchase date. For a period of up to one year, there is a flat $\$ 55.00$ labor charge for warranty parts replacement. After one year, charges will be made for parts and labor.

Warranty is void if in the opinion of Morrow/Thinker Toys the unit has been subject to abuse, misuse, improper assembly, or if directions have not been followed in assembly.

A COPY OF THE INVOICE OR PROOF OF PURCHASE IS REQUIRED FOR IN-WARRANTY SERVICE. A description of the problem must accompany any item returned for repair. Shipments must be made to Thinker Toys prepaid. Morrow/Thinker Toys is not responsible for any consequential damage.

The foregoing warranty is in lieu of all other warranties expressed or implied and in any event is limited to product repair or replacement.

LIMITED WARRANTY

Morrow Designs Inc. warrants its products to be free from defects in workmanship and material for the period indicated. This warranty is limited to the repair or replacement of parts only and liability is limited to the purchase price of the product. The warranty is void if, in the sole opinion of Morrow Designs Inc., the product has been subject to abuse, misuse, unauthorized modification, improper assembly, nonconformance to assembly directions, or if the unit is used in any other manner than intended.

KITS - Parts, including the printed circuit boards, purchased in kit form are warranted for a period of ninety (90) days from the invoice/ purchase date. If a board, which was purchased in kit form, is returned for testing or repair, a minimum service charge of $\$ 35$. will be assessed.

ASSEMBLED BOARDS - Parts, including the printed circuit boards, purchased as factory assebmlies, are warranted for a period of six (6) months from the invoice/purchase date. Out-of-Warranty boards returned for testing or repair will be assessed a minimum of $\$ 35$. service charge. If the charge to repair will exceed $\$ 35$., the customer will be notified prior to the actual repair.

ELECTROMECHANICAL PERIPHERALS - Peripheral equipment, such as floppy disk drives, hard disk drives, etc., not manufactured by Morrow Designs Inc. have warranties which vary according to the manufacturer. In most cases, Morrow Designs Inc. provides a warranty equal to or greater than the original manufacturer. Please contact the factory for individual warranty information. Warranty information for each device is included with the equipment when it is shipped.

RETURN PROCEDURE - A COPY OF THE INVOICE OR PROOF OF ORIGINAL PURCHASE IS REQUIRED AND MUST ACCOMPANY THE ITEM FOR IN-WARRANTY SERVICE. Items returned without proof of original purchase will be sent back, shipping charges collect. A description of the problem must accompany the returned item. Shipment must be made prepaid to Morrow Designs,Inc. Repaired items will be shipped via U.P.S. surface. Shipment by air requires payment of the additional charges. Morrow Designs Inc. is not responsible for any consequential damages or for damage incurred in transit.

The foregoing warranty is in lieu of all other warranties either expressed or implied and, in any event, is limited to product repair or replacement.

LIMITED WARRANTY
 DISCUS 1 and DISCUS 2D Systems

This addendum to Morrow Designs Inc. Limited Warranty applies to the Shugart Associates Model 800/801 Floppy Disk Drives as used in the DISCUS 1 and 2D Disk systems.

Parts and labor for a floppy disk drive purchased from Morrow Designs Inc. are warranted for a period of forty-five (45) days from the invoice/purchase date. For a period of one (1) year from the invoice/ purchase date, parts are warranted. A fixed fee of $\$ 55$. will be charged for labor. After one (1) year current rates for parts and labor will be charged.

THE OISK SOCKEY 1 A UIVIVERSAL FLOPPY OISK CONTROLLEA FRON MORROW'S MICRO-STUFF A THinker toy ${ }^{\text {Em }}$ product

THE DISK JOCKEY I A UNIVERSAL FLOPPY DISK CONTRRLLER FROM MORROW'S MICRO-STUFF
A THINKER TOY PROOUCT
system slock diagram

[^0]: *Bits marked with an asterisk reflect the current state of status lines from the floppy disk drive. See the documentation for the floppy disk drive actually in use for a detailed specification of these signals.

